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The qualitative approach in investigating the role of 
species interactions on stability of natural communities 
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Community models with competition and mutualism are qualitatively analyzed using the methodology of loop analysis 
combined with computer stochastic simulation. The concept of "moving equilibrium" in the growth rate of the species is 
discussed in 14 "tables of predictions", presented as analytical tools that can help to shed light on controversial ecological 
issues such as direct versus indirect interaction and positive feedback effects on stability. While the stochastic simulation 
shows that only little or no difference exists in probability of stability between models with competition and models with 
mutualism, the related tables of predictions show that the networks among links are able to activate indirect interactions, 
with both negative and positive effects, between any pair of species. This phenomenon makes it difficult to determine how 
much stability is related to the direct interactions. 

Key'words: Community analysis; Competition; Direct and indirect relations; Loop analysis; Moving equilibrium; Mutualism; 
Positive feedback. 
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A common and controversial theme of 
modern ecological research is the role of 
intra- and interspecific processes. It has been 
widely accepted (May, 1976; Thompson, 1982) 
that the regulatory mechanisms underlying 
these aspects form the basis of the function- 
ing of natural populations, and therefore of 
entire ecosystems. 

Most investigations documented in the 
literature that deal with relationships between 
species (Fig. 1) have been oriented to the study 
of predation avd competition phenomena 
(Berryman, 1981; Connell, 1983; Schoener, 
1983), even though renewed interest in other 
forms of interactions is arising. 

The influence c,f competition and mutualism 
on the stability of natural systems is 
challenging theoretical ecology, and mutual- 
ism, in particular, has been the subject of 
recent studies (Boucher, 1985; Wolin, 1985; 
DeAngelis et al., ].986). 

Competition 
interference 

Mutualism Predation 
Symbiosis Parasitism 

Fig. 1. Different kinds of interaction between species, and 
loop analysis symbology. 

Some models of mutualism (Vandermeer 
and Boucher, 1978; Goh, 1979; Travis and Post, 
1979; Pierce and Young, 1986) are based on 
modified Lotka-Volterra equations for two 
competitor systems. Since both the 
competitive and the mutualistic associations 
express positive feedbacks, the Lotka-Volterra 
type models prove to be unstable, and stability 
seems to be assured only by the presence of 
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particular controlling factors; for example by 
fairly strong intraspecific self damping, or by 
extremely efficient predators (Takeuchi, 1983). 

If mutualism leads to instability, why is it so 
widespread (Boucher, 1982) in nature? In 
search of key-solutions for the paradox, 
different theoretical approaches have been 
developed. 

Several authors (Sutherland, 1981, Pilette et 
al., 1987), in their investigations on community 
stability, pointed out the necessity of 
investigating system frameworks as wholes, 
because of the variety of roles played in them 
by the many components involved. In this line, 
we feel it is useful to analyze the effects 
produced by competitors and mutualists 
within natural communities. In doing so, two 
aspects require special attention. 

First, the problem terms need to be clearly 
defined (see Addicott, 1981). The generic 
definition of mutualism, for instance, does not 
distinguish: (i) the type of association between 
species, which can be symbiotic or not; (ii) the 
mechanisms by which interactions, direct or 
indirect, are produced; (iii) the degree of 
dependence shown by species able to practice 
either obligatory or periodic forms of mutual- 
ism. 

Second, complexity needs to be considered. 
Increased realism in models is sought by 
including several competitive and mutualistic 
species (Post et al., 1985), and species that 
influence the dynamics of the system, although 
they are not directly involved in those associa- 
tions (Heithaus et al., 1980; Addicott and 
Freedman, 1984). 

Methods 

The investigations were carried out by 
means of analytical extensions of the loop 
analysis methodology and stochastic 
simulation. Specifically, the responses of 
equilibrium levels to changes in the growth 
rate of the species are determined. These res- 
ponses are presented as "tables of predictions" 
for the moving equilibria. We use the phrase 
"moving equilibrium" as found in Levins 

(1974): when the c parameters,  assumed as 
constants in the system equation d x ~ / d t  = f~ 

(x . ,  x . . . . . . .  , x  ; c . ,  c ...... c ), change at a rate slower 
than that of the x variable parameters,  we are 
dealing with a system in moving equilibrium. 
The tables become tools for understanding (i} 
direct interaction versus indirect interaction 
(Lane, 1985) and (ii) interspecific processes 
with respect to stability. 

It is possible to extend the qualitative 
analysis (details on the loop analysis principles 
are in the appendix) to predict how the system 
will behave in response to a variation of one or 
more components. Every model presents as 
many alteration entries as are the components 
belonging to it. The outcomes altogether form 
a table of predictions, that shows how "inputs" 
on variables' dynamical changes (growth rate 
increases) eventually affect the equilibrium 
values of all the components. 

The table entries derive from the analysis 
of model's paths and feedbacks. A change in 
the equilibrium value of a generic y'th compo- 
nent (aXj* the star identifies the equilibrium 
value), produced by altering a parameter  (0c), 
is determined through the equation 

~ L~-cJ 
ac F 

F~oopJ 

applied n x n times (n is the number of model 
components) to give the elements of the table. 
The formula is interpreted as follows: 
• The outer/- indexed summation is for all the 

functions fl that  include the altered para- 
meter  c ( 8 f ~ / 8  c). 

• The inner k-indexed summation is for any 
open path p~] that leaves X~ towards the 
component J~i whose equilibrium value has 
to be computed. An open path is a circuit 
that connects two components without 
crossing any other component more than 
once. The length of the path is given by the 
k crossed components minus one (k - 1). 
The summation is necessary because, 
depending on the model, several paths might 



exist of the same length, referring to the 
same pair of components. 

• Each path is multiplied by the corresponding 
complementary feedback Ff~ _ kl- To evaluate 
a complementary feedback of a given open 
path, it is examined the subsystem of n - k 
components with interconnections not 
included into the ]~revious path• 

• The resulting quantity is divided by the 
overall feedback F ,  computed only once for 
the whole system of n components. 
In many instances, the calculation of feed- 

back levels based on the algebraic signs of the 
loops remains indeterminate, as occurs for F 8 
in the example described in the Appendix. In 
these cases, no conclusions can be reached 
regarding the stab:ility of a system. What can 
be calculated, at v~ost, are the conditions to 
which the coefficients involved must be 
subjected, so that  stability will be assured. 

The real values of a must be known if these 
• • ' J  o 

ambiguities are to be resolved, but  this is diffi- 
cult, because models of communities are often 
set  up hypothetically, or express interactions 
hardly quantifiable. As a remedy, one might 
utilize stochastic :~imulations (Giavelli et al., 
1988), in which the intensities of interactions 
between all the pairs of species in a given 
model are assigned values casually chosen 
from a prefixed conventional interval. In the 
models presented here, the values of 
coefficients % refer to interval [0,1]. 

The stochastic process handles the links 
between variable.,~ in a totally independent 
way, and the assigned values are not con- 
strained by the relative position of links and 
variables connected. This assumption might be 
somehow too aspecific, because it is expected 
that  pairs of relations be correlated to some 
degree: a shares with a~, and a j with akj the 
species i and 3", respectively, while % and a~ 
share both• In an unknown system, however, 
with no references for the actual species 
involved, it would be quite subjective to trace 
back such dependencies, and consequently to 
weight values befc,re assignment. 

The computer procedure, repeated 105 times 
for each model, .creates a large number of 
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matrices, and analysis may be carried out on 
each one of them. The calculation of the 
percentage of cases found to be stable thus 
permits "measurement" of the probability of 
stability for the system under examination. 

R e s u l t s  

The results are presented in Figures 2, 3 
and 4. A total of 14 models were developed and 
their corresponding tables of predictions 
obtained. The stochastic simulation routine 
was applied to each model; the resulting 
probabilities of stability are reported in the 
figures. 

The tables of predictions for each model are 
also shown; they give the direction of change 
of abundance of each species in a model. Every 
species has a row and column position: the row 
position designates the location of an external 
change ("positive input": a change in a 
parameter,  e.g. fecundity or mortality) in such 
a way as to increase ( + ) the growth rate of the 
species abundance. 

The symbols allocated within the tables 
denote the change in abundances for all the 
column-species of the system: (+ )  predicts an 
increase, ( - ) denotes a decrease, (0) expresses 
no change in the equilibrium level, (?) marks 
unpredictable results. Symbols between 
parentheses indicate that some uncertainties 
occur in those predictions, and the outcomes 
have to be considered on a chance basis. 

It is important not to confound the damping/ 
enhancing action of a species toward another 
species or itself (expressed by links in the 
graphs) from the network effects occurring to 
species, due to actions from outside upon each 
species (expressed by signs in the tables of 
predictions). It is not contradictory, for 
instance, that the diagonal of many tables has 
no negative signs, whereas the corresponding 
species are self-damped. 

Details on loop analysis are in the appendix; 
Puccia and Levins (1985) give a complete 
description of the method. 
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Discussion 

Direct and indirect relationships 

The direct/indirect state characterizes rela- 
tionships in models as well as in nature. One 
could easily justify the insertion of intermedi- 
ate variables between any pair, or, by 
deliberately omitting a common resource, turn 
for instance a pair of independent predators 
into competitors. The moving equilibrium 
results will not change, but stability will. One 
always assumes that the hypothetical models 
faithfully mirror the reality, but one should be 
aware of the above aspect when building mod- 
els and linking entities, which certainly is the 
major obstacle ecologists have to face in field- 
testing theory. 

Browsing the recent literature it becomes 
apparent that no agreement has been reached 
among authors on how to define a certain inter- 
specific relation as direct or indirect. This is 
particularly true for mutualism, but could 
equally apply to competition (see Neill, 1974; 
Davidson, 1980). Consider mutualism. From an 
intuitive point of view, direct processes should 
involve only cases in which two partners 
benefit each other without the involvement of 
other species. Conversely, the presence of one 
or more intermediate species could be thought 
of as a form of indirect relation (Addicott, 1984). 
In natural systems, examples of the first kind 
("direct") typically refer to nutrient exchange 
(Kleinfeldt, 1978) and energy transfer (Glynn, 
1976). Examples of the second kind ("indirect") 
include: protection of a species from a predator 
through the action of one partner (Bloom, 1975; 
Berger, 1980), increased availability of prey 
(Mares and Rosenzweig, 1976; Vandermeer, 
1980), decreased competition resulting from the 
action of a mutualist (Osman and Haugsness, 
1981). 

While we do think that the terms 
competition and mutualism should be reserved 
only for species pairs directly interrelated, it is 
also true that agreement is still lacking on how 
to label the many forms of mediated negative/ 
positive influence between species. In search of 

a more precise definition of mutualism and its 
many varieties, DeAngelis et  al. (1986, pp. 101 
-103)  compiled a catalog of 46 positive 
dependencies, subdividing them into obligate, 
facultative, and indirect, involving intermedi- 
ate agents. In addition, there are cases of 
species pairs without any connection at all 
between themselves (neither both nor one way) 
and yet  referable to as "mutualists"; this hap- 
pens through feedback among one or more of 
the remaining species. 

Figure 2 compares three simple models with 
pairwise competition and mutualism. Schemes 
(2a)--(2d) refer to direct associations between 
species X1 and X2, whereas schemes (2e) and 
(2f) refer to indirect relations. 

From the graphs of Fig. 2 (see the typologies 
of Fig. 1), X1 and X2 are competitors in models 
(2a), (2c), (2e), and mutualists in models (2b), (2d), 
(2f). With reference to these links, their tables 
of predictions (i) confirm the two way direct 
links shown in (2a) and (2b); (ii) clarify the links 
in (2c) and (2d) (in (2c) X2 damps X1 favoring its 
predator X3; in (2d) X2 defends the partner X1 
from the assault of its predator X3); (iii) detect 
the hidden links in (2e) and (2f), where the two 
species are prediction-related, even though no 
connections appear to join them in any way. In 
these cases we say that X1 and X2 are 
indirectly associated, with competition in (2e), 
and mutualism in (2f). 

It is interesting to note that X3 and X4, 
despite their appearing graphed links 
(mutualistic in (2e), competitive in (2f)), do not 
influence each other and themselves: a 
"positive input" on these entry rows produces 
no growth nor decrease in their equilibrium 
levels. The species are related in the models, 
but they result to be unrelated in the tables. 

Another pair of "misleading" interactions is 
brought about by X2 and X3 in models (2c) and 
(2d): they turn out to be mutualist in (2c) and 
competitive in (2d). In fact one easily sees that 
table (2d) derives from the co-diagonal rotation 
of table (2c) as a direct consequence of the 
inverted roles played by X2 with respect  to the 
other two species. 

A comparison among these six models and 
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Fig. 2. Models  of s imple communi t ies  wi th  d i rec t  and indi rec t  in te rac t ions  be tween  species X1 and X2. Direct ,  (a) and (c), and 
indi rec t  (e) competi t ion;  ,direct° Co) and  (d), and indi rec t  (19, mutual ism.  On the  r igh t  side of each model a re  the  tables  of predic- 
t ions.  

their tables of predictions demonstrates that 
greater  complexity and connectivity yields 
relationships through feedbacks. These 
feedback-hidden relations alter our perception, 
based on well defined, directly observable 
interactions. 

Competition and mn.tualism vs. stability 

In ecology, one view of stability is the persis- 
tence of a community or ecosystem. This 
concept is not synonymous of static conditions 
or homeostasis: a system can be stable, in the 
sense of persistence, even if all of its 
components (species abundances, nutrient 
concentrations, etc.',, and dynamics (predation 
rates, consumption rates, etc.) are changing, as 
long as none vanishes. 

In two,species models, competition and 
mutualism seem to Show the same properties of 
stability (Post et al., 1985), and theoretical stud- 
ies do not explain why in nature cases of 
mutualism are so trequent (Heithaus et al., 
1980). 

The issue originally considered in the early 
stages of this s tudy focused on the search for 
different stability properties between 
competition and mutualism in complex 
community models. Taking direct relationships 
into account, models were selected requiring 
only a single change to switch from competition 
to mutualism. We soon became aware that  even 
with simple three-species models, altering a 
single relation did influence the entire model as 
a whole, according to the various combinations 
among feedbacks. 

For example, we considered a community 
with two independent predators and one 
common self~lamped prey species. Theoretical 
analyses carried out by Koch (1974) and 
Rescigno (1977) show that two predators of the 
same prey can coexist if the intensity of their 
use of the shared resource is identical: the 
model is stable only under particular 
circumstances. Our addition of competition 
between the predators caused the system to 
become unstable, while the substitution with 
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Fig. 3. Models of mid-complex communities. Pair species X3-X4 and XS-X6 are "true competitors" in schemes (a) and (c), and 
"true mutualists" in schemes (b) and (d). The percentage of stability obtained with a stochastic algorithm is indicated within 
each model frame. The corresponding tables of predictions are also shown. 

mutualism favored stability (from 0 to 36°/0). 
There was an explanation in terms of positive/ 
negative feedback balances, but the tables of 
predictions did not confirm the two prey 
species as mutualists. In this simple three-spe- 
cies system, no causation was deducible 
between mutualism and stability improvement. 

In Fig. 3 two pairs of models with their asso- 
ciated tables of predictions are presented. 
These models represent  mid-complex ecological 
communities and were chosen to exemplify how 
one small variation in the network can induce 
substantial changes in the tables of predictions 
without necessarily modifying stability. 

Diagram (3a) shows a direct competitive 
interaction between X3 and X4, while in the 
analogous diagram (3b) the species are direct 
mutualists. Their tables of predictions confirm 
the competitive and mutualist relationships. 
Similarly, for the other two six-species models, 
X5 respectively competes (3c) or is a mutualist 
(3d) with X6. Their tables of predictions confirm 

the relations drawn. For these four models the 
probability of stability ranges from 470/0 to 
50°/0 and thus does not reveal substantial 
differences between structures.  

In (3a) species X3 competes with X4 and pro- 
duces positive feedback at levels 2 and 3 {F 2 and 
F3). In (3b) species X3 and X4 are mutualists 
and instability arises only in positive feedback 
at level 2 (F2), while F 3 gains two negative feed- 
back loops. Thus F 3 strengthens the first 
Routh-Hurwitz stability criterion (see the 
Appendix), but weakens the second, and 
stability depends on the balance of the relative 
strengths of the interactions, that is, the 
magnitude of the links. The simulation shows 
for model (3b) only a small, quite insignificant 
increment in the probability of stability. 

The four-species models (and still more the 
six-species', with only a single interspecific link 
changed) produce ambiguous indirect relations. 
From the table for model (3a) species X1 enters 
in an indeterminate cause-effect relationship 
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Fig. 4. Models of five-species communities. Species X4 and X5 are “true competitors” in scheme (a) and “true mutualists” in 

scheme (b), but, according to the predictions outcomes, only “possible competitors” in (cl and “possible mutualists” in (d). The 
probability of stability isindicated together with each structure. 

with all the community species, including itself. 
The table for (3b) #shows, instead, how Xl is a 
mutualist both with X3 and with X4. Such a 
community is characterized by one direct and 
two indirect mutualisms, but nevertheless its 
stability does not differ from that of (3a) where, 
according to the table of prediction, no 
mutualistic relationship can be demonstrated. 

Also in (3~1, characterized by a direct 
competition between X5 and X6, and in (3d) 
where these species are mutualists, the sto- 
chastic simulation reports no difference in 
stability probability. In model (3~) the table of 
prediction shows indirect mutualism in the 
couples X2-X5 and X1-X6, whereas the couples 
X2-X6 and Xl-X5 are revealed to be indirect 
competitors. Furtlhermore in (3d) the X5-X6 
mutualism, the counterpart to the competitive 
relation of (3~1, determines two new indirect 
mutualisms in X2-X5 and in X2-X6, and the 
effect of an input on Xl towards all the 
community species becomes totally undeter- 
mined. 

Typical multi-trophic communities are 
drawn in Fig. 4. Species X4 competes with X5 
in model (4a) and is mutualist in (4b). The tables 
confirm these interactions, but reveal as many 
as 11 uncertainties in (4a) and only 5 in (4b) 
where an indirect mutualism can be found 
between Xl and X4 and between Xl and X5. 
The probabilities of stability are exactly the 
same. But with the other pair of models, which 
only differ in the presence of the damping 
effect of Xl over X2, stochastic simulation 
resulted in a probability of stability for model 
(419, where species X4 and X5 compete, 24% 
lower than that of model (4d), where species X4 
and X5 are depicted as mutualists. 

A detailed analysis of the stability conditions 
for the two criteria shows that feedback F3 is 
critical. Loops X3-X4-X5-X3 and X3-X5-X4-X3 
provide potentially positive contributions in 
(4c), while the same loops become negative in 
(4d). Similarly, at the level of the second stabil- 
ity criterion, the same ambiguity of F3 will ren- 
der the positive conditions applied in this case 
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even more improbable. In fact, in expression 
F12"F 4 + F,  "F  5 - F 1 "F  2"F  3 - F82 > O, feed- 
back F s is part  of two negative sub-expressions. 
Excluding the quadratic element not affected 
by sign, it can be easily observed that F 1 • F 2 • F s 
will be negative if F 3 is also negative (in fact F 1 
is always negative, while F 2 has only a few 
chances to be positive, because 5 two-species 
circuits out of 6 are negative). The only pres- 
ence of this specific association between X4 and 
X5 gives negative loops in (4d) that  contribute 
to satisfy the first as well as the second 
criterion for stability. We cannot however say 
X4 and X5 positively interrelated, because of 
ambiguities in the tables of predictions. 

Conclusions 

In order to investigate the effects on 
stability of direct competition and mutualism, 
three- to six-species models have been set up 
with observable interactions confirmed by the 
prediction tables. The stochastic simulations 
show that only little or no difference exists in 
probability of stability between models with 
competition and models with mutualism. The 
results would also confirm that these relations 
equally affect stability, as shown in two-species 
models' studies. 

But in analysing the stability of complex 
communities, the "network effect" cannot be 
neglected. 

First, community systems are characterized 
by links that generate indirect interactions 
(Levine, 1976; Vandermeer et al., 1985). In this 
context, changing, as we did, a single 
relationship in the same structure, activates 
different behaviors in terms of functional inter- 
actions among species, so that it becomes very 
difficult to ascribe stability properties of 
models to specific interactions. It does not seem 
possible to reach general conclusions, because 
(i) in models with both direct and indirect 
interactions, it is unclear if stability is related 
to the direct interactions only; (if) if indirect 
interactions affect stability as well as direct 
interactions do, it remains undefined how much 

stability belongs to each of these two functional 
mechanisms. 

Second, models with species depicted as 
direct mutulists (and the same applies to direct 
competitors) lead to prediction tables that 
leave unknown in which way each partner 
affects the other (see model (4d)). There are, in 
fact, different paths, and different 
complementary feedbacks, that  connect such 
variables. Some of these paths are 
characterized by negative effects, some others 
by positive effects: are the species to be consid- 
ered mutualists? 

Appendix 

Loop analysis allows models be examined 
qualitatively, hence it is a tool for investigating 
cases where the magnitude of links between 
species is partially or completely unknown 
(difficulty of making measurements,  
unavailability of data, real interactions not 
suitable for quantifications, etc.). 

Any system can be represented with a 
model. Its qualitative properties are 
represented in a diagram that graphically 
shows if and how each component is connected 
with the others. It is assumed that links "-~" 
express favor relationships, while links "--o" 
denote contrast relationships. The models are 
based on links between variables that can be 
described by a set of linearizable equations. 

In Fig. 1, the associations indicated by an 
arrow represent  effects that favor the pointed 
entity (species), while those indicated by a 
circle represent  inhibitory effects. The 
intensities of associations are expressed by 
means of coefficients a which  indicate how 
much  species  ~ is influenced by species 3 • 
The entire group of coefficients forms the so- 
called "community matrix". 

According to classical analysis, the study of 
the eigenvalues of the community matrix 
provides knowledge of the properties of 
stability, while loop analysis utilizes the 
concepts of positive and negative feedback. 
Positive feedback is set  off when the compo- 
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Fig. 5. A three-species model with all possible loops for posi- 
tive and negative feedbacks. Schemes (a) and (b) are one- 
node loops that determine the overall feedback of first level 
F1; schemes (c), (d) and (e) are two-node loops that determine 
the overall feedback at the second level Fz; schemes (fl and 
(g) are three-node loops that define F 3. Note that (e) and (f) 
are composed of two independent loops. 

nents of a system Jlnteract so as to amplify the 
effects produced on the system by a 
perturbation; negative feedback, on the 
contrary, tends to moderate them. Since the 
stability of a given system is measured by its 
capacity to recover the equilibrium values of its 
variables after a displacement due to 
perturbation, we can deduce that  a direct 
connection between negative feedback and 
stability exists. And since feedback effects are 
always associated with the presence of one or 
more functional loops linking the involved 
entities to the process of retroaction, loop anal- 
ysis is able to reach conclusions on the stability 
of a system by examining it at the level of the 
loops that  provoke internal feedback processes. 
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Fig. 5 illustrates a three-species model with 
all possible loops that  determine both positive 
and negative feedbacks. In loop analysis, they 
are called closed loops which, following the 
direction of the interaction coefficients, return 
to the initial variable without crossing 
intermediate nodes more than once. The num- 
ber of nodes making up a loop varies from 1 to 
N, N being the total number of components in a 
system. 

In order to determine the stability of a given 
model, loop analysis utilizes circuits that  are 
combinations of different unique paths: when 
the system complexity grows (i.e. more 
components and more links are implied in the 
model), the number of these circuits also goes 
up, and as a consequence the number of 
conditions to be met for the system be stable 
increases as well. 

The model in Fig. 5 presents two one-node 
loops (5a), (5b) that  determine the overall feed- 
back of first level F 1, three two-node loops (5c), 
(5d), (5e) that determine the overall feedback at 
the second level F 2 and two three-node loops 
(5f), (5g) that  define F 3. Rather than being 
closed circuits, (5e) and (5f) are composed of two 
independent loops: independent loops are loops 
that  have no nodes in common; for example, in 
F 3 it would be incorrect to consider the one- 
node loop formed by species X3 and the tw~  
nodes loop X2-X3, because they have X3 in 
common. 

With respect to the feedback circuits, loop 
analysis dictates the conditions (or criteria) 
that  must be satisfied in order to render the 
system stable. 

The first criterion requires every feedback 
level be negative (F~ < 0, i -- 1,2 .... N). It is thus 
necessary to sum algebraically the products 
obtained from all loops that  are part of a given 
F~: the interaction coefficients a,s are 
multiplied, a positive sign is given to the 
products obtained from the feedbacks formed 
by an odd number of independent loops (5a), 
(5b), (5c), (5d), (5g), and a negative sign is given 
to the products obtained from the feedbacks 
determined by an even number of loops, (5e), 
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(Sf). On the basis of the example of Fig. 5, we 
have 

= + + 0 

- -  [ - a . ' - a g  

-~ -- a31 "(/13 -- a23" a32 -- a l l "  ~33 <~ 0 

F~ = + [ % . % ~ - a ~ J  - [ - % . % -  - a , , ]  

--  a 1 2 - a s l . a 2 3  -- a s 2 " a 2 3 - a l l  -~ ? 

and since there is a three-node loop that  
generates positive feedback (5f), the sign of F z 

remains indeterminate: the system is stable 
only if the positive links intensity is lower than 
th e  negative links intensity that makes up level 
F3. 

The second criterion for stability states that 
the feedback intensity of the longer loops must 
not be too high with respect to that of the 
shorter loops. For a three-species system such 
as the one given in the example, this condition 
is expressed algebraically as F 1 • F 2 + F 3 > 0. 
The same formula holds for a four-species sys- 
tem, while for systems with five or six 
variables the second criterion becomes - ( F ~  • 
F 2 + F3)" F 3 + (F 1 " F 4 + Fs)" F 1 > 0, o r ,  after 
simplification, F12 - F  4 + F~ .F~ - F~ .  F 2 • F 3 - 
F32> 0. 
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