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A basic question in ecology concerns the role of species interaction on dynamics of natural communities. In this framework, 
ecologists have considered predation, competition, mutualism, ~he three most important interactions, highlighting their specific 
effects on distribution arLd abundance of species, providing knowledge about phenomena like coexistence and extinction. This 
paper seeks to identify the effects of predation on stability of natural communities by mathematical models. Simple multispecies 
community models, organized in trophic levels, are analyzed by means of a qualitative technique, loop analysis, combined with 
a computer calculation procedure. Results do not support the hypothesis of predation as a stabilizing factor. Rather, the out- 
comes of the analysis suggest that predation may or may not stabilize a community. This depends on the predator's behaviour 
and on the network of I/he community. 
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Introduction 

This article focuses on the stability of natural 
communities, one c f the key concepts of com- 
munity ecology. Both theoretical (May, 1973; 
Saunders and Basin, 1975) and experimental 
(McNaughton, 1977; Lawlor, 1980) approaches 
have been used to investigate this theme. Most 
have been oriented toward the solution of the 
complexity-stability controversy, and, from a 
theoretical point of view, stability has been 
evaluated as a function of various parameters, 
the most common of which is the connectance 
(Gardner and Ashby, 1970; Somorjai and 
Goswami, 1972; Yodzis, 1980; Armstrong, 
1982). Such an approach pays little attention to 
specific relations involving individual entities 
(Maertens, 1987) and how each contributes to 
the stability of the whole system. 

By contrast, other ecological studies have em- 
phasized the specific role of different types of 
interaction in affecting both structural and func- 
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tional characteristics of natural communities. 
Considering the problem of coexistence, for ex- 
ample, several authors (Paine, 1966; Connell, 
1975; Caswell, 1978) supported the idea of 
predation as a factor allowing coexistence; on 
the other hand studies centered on competition 
(Tilman, 1982) indicated that such interaction 
very often determines exclusion. More recently 
(DeAngelis et al., 1986), it has been suggested 
that even mutualism could play a peculiar and 
significant role in the development and 
organization of ecosystems. 

In summary, it seems that each relationship 
behaves in a characteristic fashion with respect 
to some aspects of community ecology. Is this 
also true for stability? Do predation, competition 
and other species interactions contribute dif- 
ferently to the stability of a natural community? 

This article examines the role of predation on 
stability using a theoretical approach. Other 
authors have addressed this issue. Levins (1975) 
stated that a predator (keystone predator) may 
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stabilize two competitors, and Yodzis (1976) 
showed that harvesting could alleviate competi- 
tive instabilities. In a previous work (Parrish 
and Saila, 1970; Cramer and May, 1971), how- 
ever, a predator was only shown delaying ex- 
tinction due to competitive instability. More 
recently, other theoretical evidence (Takeuchi, 
1983; Takeuchi and Adachi, 1983) seems to con- 
firm a possible stabilizing role of predators. 

Looking at the dynamics of interacting 
populations in terms of feedback, predator-prey 
relationships produce negative feedbacks that 
should increase stability, unless the feedback is 
so strong and delayed that it produces time lag 
oscillations, but the question of stability of two 
species models versus multispecies community 
stability is far from being resolved. 

Models presented here involve two, three and 
four species, organized in trophic levels. Such 
models are analyzed by a semi-quantitative pro- 
cedure that combines loop analysis and a com- 
puter eigenvalue analysis. 

Methods 

Loop analysis (Levins, 1974) applies to com- 
munities at or near equilibrium. A loop model 
representing a natural community is a signed 
digraph in which vertices, that is the species, are 
connected by lines. Some of these lines end with 
an arrowhead, others with a circlehead. The 
former signifies positive or enhancing effect, 
while the latter indicates inhibition. A loop mod- 
el of a predator-prey system shows two vertices 
connected by an arrowhead pointing to the 
predator and a small circlehead going from the 
predator to the prey, as shown in Fig. 1. 

Associated with each link is a coefficient (aij), 
which is positive for an arrowhead and negative 

Fig. 1. A signed digraph represent ing  a predator-prey 
system (x = prey; y = predator).  

for a circlehead. These coefficients are obtained 
by linearizing near equilibrium the differential 
equations describing the rate of change of each 
species. A loop model is a pictorial representa- 
tion of a Jacobian matrix (community matrix) 
whose eigenvalues determine the stability of the 
system. Eigenvalues are calculated by solving 
the characteristic equation IA - k/f = 0, where 
A is the Jacobian matrix and I is the identity 
matrix. 

Levins (1975) showed the correspondence be- 
tween the coefficients of the characteristic equa- 
tion and the feedbacks involved in the related 
signed digraph. Thus, stability analysis can be 
performed by evaluating all the feedbacks 
generated by loops connecting the variables of a 
model. Since not all loops involve the same 
number of variables, the analysis requires com- 
putation of different levels of feedback. The 
Routh-Hurwitz criteria translated in terms of 
feedback (Puccia and Levins, 1985) require that 
all the feedback levels must be negative for an 
equilibrium to be stable (Fk < 0, k = 1,2,...,n). 
Furthermore, negative feedbacks produced by 
longer loops must not be too strong when com- 
pared to those from shorter ones (for the models 
presented here this means F1F2 + F3 > 0). 

Pilette et al. (1987) utilized loop analysis to in- 
vestigate the role played by various components 
of several natural systems with respect to 
stability of their model systems. They evaluated, 
in particular, the effects of entity removal on the 
stability of the remaining structure. 

To examine the role of predation on communi- 
ty stability, a different strategy, based on the 
assigning of random values to matrix coeffi- 
cients aij (Giavelli et al., 1988), is used in this 
work. For a given model 105 different combina- 
tions of values are assigned by the computer to 
the coefficients of the community matrix. Such 
values are conventionally chosen from within 
the standard interval [0-1]. Eigenvalue analy- 
sis is performed for each combination and the 
percentage of stable cases is assumed as the 
probability of stability for the given structure. 

In addition, some of the models investigated 
were further examined, and the percentage of 
stable cases plotted as a function of the 



magnitude of each single link involved in the 
structure itself. It was therefore possible to in- 
vestigate the influence of the links' intensity on 
the stability of the entire model. 

Results of this analysis are summarized in 
labelled diagrams shown in Figs. 2 - 4 below the 
graphs. Such diagrams display changes in prob- 
ability of stability (:;cale from 0°70 to 100%) as a 
function of links values. The direction of the ar- 
rows express variation of link's intensity from 0 
to 1. The diagrams were obtained in the follow- 
ing manner. For each link in a given model, 
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Fig. 2. Two species models: (2a) competition, (2b) mutualism 
and their percentage of stable cases. Diagrams below each 
model plot the probability of stability as a function of model 
links (see text for explanations). 
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Fig. 3. A predator feeding upon two competitors (3a) and 
two mutualists (3b). 

values assigned to its coefficient aij by the com- 
puter were grouped within 20 intervals of 
magnitude (0.0- 0.05,0.05- 0.1 .... ,0.95-1.00). 
For each interval a certain number of stable 
cases resulted from the matrix coefficient analy- 
sis, and, consequently, a frequency distribution 
of stable cases could be observed for every link 
as related to its intensity. Labelled diagrams 
used here summarize the frequency distribu- 
tions obtained for the selected models. 
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Fig. 4. A three-trophic level community model with a top 

predator. 

Loop models discussed in this work represent 
simple hypothetical communities, and may be 
obtained through linearization of generalized 
Lotka- Volterra equations of the form 
(Granero-Porati et al., 1982; King and Pimm, 
1983; Maertens, 1987) 

- Ni ri + b i '~ i  + bij N j  
i = j f f i l  

where bii = 0 for predators (only hampered by 
their source of food) and bii < 0 for the prey 
species, according to a logistic growth. 

However the same loop models presented here 
may be produced by more complicated equa- 
tions, which account for many dynamical 
features of interspecific processes not consid- 
ered in Lotka-Volterra systems (Giavelli and 
Bodini, 1990). 

Results and discussion 

Figures 2 - 5  show the models analyzed, with 
their percentage of stable cases in the upper 
right hand corners. The feedback calculation for 
selected examples is presented in the Appendix. 

The simplest models investigated refer to in- 
teractions within a single trophic level involving 
two competitors (Fig. 2a) and two mutualists 
(Fig. 2b). In both schemesthere are two levels of 
feedback: F1 is negative, because of the self- 
damping terms [AA] and [BB], whereas the sign 
of F2 remains ambiguous. Both mutualism and 
competition generate a two-node loop with 
positive feedback that contrasts with the self- 
limiting action in F2, whose expression is 

F2 =-{[AAI[BBI} + [[ABI[BAI} (1) 

Matrix stability coefficient analysis gives 50% 
of stable cases for both these graphs. The labell- 
ed diagrams shown in Fig. 2 suggest that in both 
models the probability of stability increases as 
self-damping terms approach 1, and coefficients 
of interaction decrease, according to analytical 
conditions for a stable equilibrium, which re- 
quire the product of intraspecific competition 
terms to be greater than that of interspecific 
processes (May, 1973; Berrryman, 1981; Post et 
al., 1985): 

I-[AA]IBB]I > I+[ABI[BA]I (2) 

The two models depicted in Fig. 3 are derived 
from the previous pair, with the addition of a 
predator (C) feeding on both populations (A and 
B). Simulation, with 48% (model 3a) and 51% 
(model 3b), shows only a small, quite insignifi- 
cant difference in the percentage of stable cases 
in comparison with competitive and mutualistic 
systems of Fig. 2. It suggests that no improve- 
ment in the probability of stability comes from 
the presence of the predator. Feedback analysis 
(see Appendix) enables us to interpret simula- 
tion outcomes. The predator adds two negative 
feedbacks at F2. It can be negative even when 
condition (2) is not met. Yet, species (C) has in- 
creased the complexity (number of species) of 



the systems, with respect to models of Fig. 2. A 
new level of feedback, F3, must be considered. 
Its sign is unknown for model 3a, since two 
positive and two negative feedbacks belong to it, 
whereas it is negative in model 3b. 

In the latter graph the three node loops pro- 
duce negative feedbacks, and the first criterion 
for stability can be violated only through F2. 
Are we allowed tc say that the stronger the 
predation the higher the probability of stability 
for graph 3b should be? Such a conclusion does 
not hold if we consider the second criterion for 
stability. It must be F1F2 + Fs > 0, and long 
loops (those which enter in the expression of F3) 
with negative feedback increase the probability 
that oscillatory instability occurs. 

In model 3a, the longest loops have positive 
feedbacks and the first criterion seems crucial 
for stability, though the sign of the second crite- 
rion is still unknown. If we now hypothesize that 
predation is strong enough (at least as strong as 
required for F2 to be negative) the second crite- 
rion will possibly be met, but F3 still would re- 
main ambiguous and asymptotic instability 
could occur. 

Models depicted in Fig. 3 suggest that a 
predator feeding upon two competitors or two 
mutualists introduces two negative feedbacks 
due to direct predator-prey relationships. They 
contrast, at level Fz, with positive feedbacks 
associated with competition and mutualism, and 
therefore have a stabilizing effect. However, at 
a higher level of feedback, the presence of a 
predator generates, through combinations of 
links, either positive feedbacks or negative feed- 
backs with time lags. Both types of feedback are 
destabilizing forces. 

Matrix coefficient analysis of single links con- 
firms the ambiguous role of species (C). Only 
small changes in the percentage of stable cases 
follow variations i:a the intensity of predation 
links ([AC], [CA], [BC], [CB]) from 0 to 1. Also, 
it seems that stability of models 3a and 3b great- 
ly depends on the magnitude of links belonging 
to the subsystem at the lowest trophic level, 
where species are competitors or mutualists. 
Similar conclusions were drawn previously (Ber- 
ryman, 1981) for a two competi tor-one 
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predator system, analogous to model 3a, assum- 
ing equal predation on both prey. The outcomes 
of eigenvalue analysis, however, reveal that 
such a condition seems not strictly necessary 
and the strength of inter- and intraspecific com- 
petition is the most important factor for stabili- 
ty, besides any constraint imposed on the 
predator. 

A more complex community (Fig. 4) is obtain- 
ed by adding a terminal predator (D) to model 
3a. Simulation gives 47% of probability of 
stability. Here too it seems that predation does 
not have a stabilizing action on the system. A 
detailed analysis of stability criteria (shown in 
Appendix) confirms such a conclusion. First of 
all it should be noted that the same feedback 
loops enter the expression of the second criteri- 
on for models 3a and 4; it means that the top 
predator is neutral with respect to the second 
condition for stability, and oscillatory instability 
occurs only if the subsystem [C-A-B] violates it. 
To avoid this, suppose there is a strong primary 
predator (C). This is not sufficient to guarantee 
stability to our model, and the first criterion 
must be carefully evaluated. The secondary 
predator (D) introduces more negative feed- 
backs at different levels, but, under the assump- 
tion of a very strong primary predator we made, 
action of species (D) at level F2 is not important 
to ensure stability. In contrast, the stronger the 
predation on (C), the greater the probability that 
Fs is negative, especially considering that 
predator (C) produces positive feedbacks and its 
prey experiences heavy predation. Although an 
extremely efficient top predator could be 
necessary to avoid a positive sign at the third 
level of feedback, instability is always possible 
through Fa. 0nly two feedback loops belong to 
Fa, and they have opposite signs. Predator (D) 
enters the composition of both loops, whereas 
the intermediate predator (C) is not involved at 
all. Rewriting Fa as follows 

F4 ffi [DC][CDI{-([AAI[BBI) + ([ABI[BA])} (3) 

shows that the sign depends only upon the sub- 
system at the first trophic level. For F4 the first 
criterion is met if and only if the inequality (2) is 
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verified. This condition is necessary for model 4 
to be stable: is i t  also sufficient? If the product 
[AA][BB] is greater than [AB][BA] the sign of 
F2 is negative, whatever the intensity of other 
feedbacks, and the first criterion for stability 
will be met. So it will happen for the second cri- 
terion. FIF2 + F3 > 0 may be violated only 
through the negative factors: -[AA][AB][BA]; 
-[BB][AB][BA]. If we now consider the terms 
+[AA]2[BB] and +[AA][BB] 2, both belong to 
the expression of the second criterion. We can 
easily compare positive and negative feedbacks 
after rewriting them in the following forms: 

(i) negative feedbacks: -[ABI[BA ] { [AA ] + 
[BB] } 

(ii) positive feedbacks: [AA][BB] { [AA] + 
[BB]} 

Such a comparison enables us to conclude that 
condition (2) is sufficient to avoid oscillatory in- 
stability. 

Unfortunately it is not possible to come up 
with an answer when we handle F3 because of 
the three node loops, unless we consider equal 
predation (May, 1973; Berryman, 1981) of (C) 
upon (A) and (B). In such a case, condition (2) 
becomes necessary and sufficient to guarantee 
stability to model 4. 

Simulation results (see table below the graph 
in Fig. 4) confirm the importance of the first 
trophic level, besides the hypothesis of equal 
predation. It suggests that stability is not sen- 
sibly affected by variations in magnitude of 
predation links. Moreover, the presence of a top 
predator imposes a further constraint on the 
community described in model 4 in comparison 
with that of model 3a: the subsystem of two 
competitors must be stable for the community to 
be stable. 

Graphs depicted in Figs. 3 and 4 are only ex- 
amples of the structural complexity which 
characterizes natural communities. Different 
structures could be stabilized by predators, as 
shown in Fig. 5. Model 5a refers to a community 
in which a predator feeds upon only one com- 
petitor. Here the probability of stability was not 

plotted as a function of the magnitude of the 
links, but feedback calculation justifies the in- 
creased percentage of stable cases in com- 
parison with models 2a and 3a. The predator (C) 
introduces only stabilizing factors. It reduces 
the effect of competition in F2, and yields the 
third level of feedback completely negative. 
Since the long loop in which (C) is involved 
([CA ][A C][BB]) is balanced in the expression of 
the second criterion, instability could be brought 
into the system only by competition between (A) 
and (B). A strong predator, contrasting the 
destabilizing action of interspecific competition 
in F2 and in F1F2 + F3, would increase the 
probability that model 5a is stable. One should 
be aware, however, that a predator would not be 
sufficient to guarantee stability, whereas stabili- 
ty of the subsystem [A-B] automatically renders 
model 5a stable. Figure 5 also shows a three 
competitors community (model 5b, 21% stable) 
that is stabilized by a predator (model 4c, 41% 
stable). 

The models presented here do not offer a 
univocal answer to the controversial issue of 
predation as a stabilizing factor in natural com- 
munity. Rather, they suggest that the ecological 
features of predator could help to clarify the 
problem. 

Model 5d shows a predator feeding upon two 
species of the subcommunity 5b. Simulation tells 
us that the difference in probability of stability 
between the two models is only 3%, whereas if 
the predator (C) preyed upon only one species 
(graph 5c) the resulting community would be 
more stable. The same consideration applies to 
models 3a and 5a; it seems that stability is 
favoured by the presence of specialized 
predators. 

Since only prey species producing positive 
feedbacks, as competitors or mutualists, have 
been considered, the hypothesis of specialized 
predators as stabilizing forces has to be tested in 
cases in which the two preys form a 
preda tor -prey  system. A linear food chain 
(model 5f) is obtained by adding a top predator 
(D) which feeds only upon predator (C), while in 
community 5g the terminal predator preys upon 
both the intermediate predator and its prey (A). 
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Fig. 5. Five models with different combinations of predation and competition. A predator feeding upon one competitor (5a); 
three competitors (5b); a Predator feeding on one of the three competitors (5c, 5e); community in which two out of three com- 
petitors are preyed upon (5d); a linear alimentary chain (5f); a predator-prey system in which both species, in turn, are preyed 
upon by a top predator (5g). 
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The percentage of stable cases decreases by 
20% when (C) and (A) are both preyed upon. 
Comparing this to model 5f, 100% stable, in 
which destabilizing forces are not present at all, 
shows that double predation produce two three- 
node loops, whose associated feedbacks can lead 
to either asymptotic or oscillatory instability 
(the first criterion can be violated as well as the 
second). 

In a broad sense, generalized predators 
feeding upon interacting species decrease the 
probability of stability, because they render net- 
works rich in long loops that introduce instabili- 
ty at different levels. Such a conclusion is in 
agreement with results obtained by other 
authors (Hubble, 1973; Granero-Porati et al., 
1982). 

Another aspect that seems to affect stability is 
food preference, an issue previously in- 
vestigated mostly within the framework of 
predator-mediated coexistence (Lubchenco, 
1978; Vance, 1978; Berendse, 1985). Models 5c 
and 5e both have a specialized predator, and the 
only difference between the two communities is 
the prey species involved. This yields a dif- 
ference of 10% in the probability of stability. 
Different choice of prey can activate different 
feedbacks and, consequently, affect stability. 
This greatly depends on the structure of the sub- 
community in which the prey is embedded. 

Conclusions 

To evaluate the effects on stability of natural 
communities of predation, several models were 
analyzed using loop analysis combined with 
computer simulation. Although loop analysis 
allows only qualitative analysis of models, it 
enables us to discriminate between stabilizing 
and destabilizing factors in community models. 

For models presented here predation does not 
have a univocal role. Sometimes it promotes 
stability, sometimes it does not. This ambiguity 
suggests that the network effect plays an impor- 
tant role on dynamics of species when they in- 
teract within complex communities. However an 
increased percentage of stable cases was found 
in those models characterized by specialized 
predators, whereas generalized predators often 

introduce destabilizing factors like positive feed- 
backs and negative feedbacks with time lag. 
Also, other ecological features, e.g. food 
preference, seem to complicate the problem, and 
the role of a predator should be evaluated case 
by case. Discriminating between predators on 
the basis of their ecological characteristics may 
help in clarifying their effect on stability of natu- 
ral communities. The models discussed here 
focus mainly on the effects of interconnections 
on community stability rather than on the im- 
portance of the form of interactions. Increasing- 
ly complex models, however, need to be 
investigated before coming up with any 
generalization. For example a more detailed de- 
scription of the relationship between the 
predator and its prey, as in cases of different 
functional response of predators to prey density, 
an issue largely investigated (Armstrong, 1976; 
Hassel, 1978; Armstrong, 1979), should be in- 
cluded in community models. Also a deeper anal- 
ysis becomes necessary to interpret, from an 
ecological point of view, the outcomes of even 
simple models. 

Finally, some of the models investigated raise 
the problem of "stability at one trophic level ver- 
sus web stability" (May, 1973), which will be 
discussed elsewhere. 
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3O 

A p p e n d i x :  F e e d b a c k  c a l c u l a t i o n  

Model 3a 

F1 --- - [ A A I -  [BB] < 0 

F2 = +[AB][BA] - [AA][BB] - [AC][CA] - [CB][BC] = ? 

F s  = - [ C A ] [ A C ] [ B B ] -  [CB][BC][AA] + [AC][BAI[CB] + [CAI[BCI[AB] = ? 

F I F 2  + Fa = - [ A A I [ A B I [ B A ]  + [AAI2[BBI + [AAI[CAI[AC] - [BBI[ABI[BAI  

+ [AAI[BB]2 + [BBI[CB][BC] + [AC][BAI[CB] + [CAI[BC][AB] = ? 

Model  3b 

F1 = - [ A A ] -  [BB] < 0 

F2 = +[ABI[BA]  - [ A A I [ B B I  - [AC][CA]  - [CBI[BC] = ? 

F3 = -[CAI[AC][BB] - [CBl[BCl[AAl  - [AC][BAI[CB] - [CAI[BCI[AB] < 0 

F1F2 + F3 = - [ A A I [ A B I [ B A ]  + [AAl2[BB]  + [ A A I [ C A I [ A C ] -  [BBI[ABI[BAI  + [AAI[BB] 2 

÷ [BBI[CBI[BC] - [AC][BA][CB] - [CAI[BC][AB] = ? 

Model  4 

F I  = - [ A A ] -  [BB] < 0 

F2 = +[ABI[BAI  - [AAI[BB] - [AC][CA]  - [CBI[BC] - [CDI[DC]  = ? 

F~ = - [ C A ] [ A C ] [ B B ] -  [CB][BC][AA] + [AC][BA][CBl + [ C A I | B C ] [ A B ] -  [ D C I [ C D I [ A A ]  

- [ D C I [ C D I [ B B ]  = ? 

F4 = + [CDI[DCI[ABI[BAI - [CDI[DCI[AAI[BBI  = ? 

F~F2 + F s  -- - [ A A ] [ A B ] i B A ]  + [AA]  2 [BB] + [ A A ] [ C A ] [ A C ] -  [BB][AB][BA] + [AA][BB] 2 

+ [BBI[CBI[BCI - [AC][BAl[CBl - [CAI[BC][AB] = ? 

Model  5a 

F~ = - [ A A ] -  [BBl < 0 

F2 = +[AB][BAl  - [AAI[BB] - [AC][CAI -- ? 

Fa = -[CAI[AC][BBI < 0 

F1F2 + F3 = - [AAI[AB][BAI  + [AA] 2 [BB] + [AA][CAI[AC] - [BB][AB][BA] + [AAI [BB]  2 = ? 


