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in complex food webs. We obtain such fundamental pathways by identifying
strongly connected components (SCCs), subsystems that groups species that take
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are obtained. Topological sorting identifies preferential directions for energy to flow
from sources to sinks, while recycling remains confined within each SCC. Resolving
food web networks for SCC highlights the possibility that compartments can be
found in ecosystems, but this does not seem a general rule. The four aquatic food webs
described in detail show a rather clear subdivision between benthic and pelagic
subcommunities, a result that is discussed in the light of other studies. Should further
research confirm these results, new insight into the way ecosystems use energy will
be provided, with implications on cycling, reciprocal dependency of variables and
indirect effects.
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Food webs are extraordinarily complex. This complexity,

no matter how inconvenient to ecological theory, must

be investigated for a grasp of ecosystem behavior

(Schmitz 1997, Bodini 2000). Understanding ecological

systems means essentially unveiling patterns that are

hidden in their complex architectures. One possibility to

explore ecological dynamics is to use energy as a

currency: in this case food webs take the form of flow

networks (Ulanowicz 1986, Christian and Luczkovich

1999, Heymans et al. 2002).

As for energy transfers, every ecosystem can be

reduced to a Lindeman’s tropho-dynamic sequence of

discrete trophic levels to which species can be appor-

tioned in proportion to their diet (Burns et al. 1991,

Ulanowicz 1995). However, this heuristically useful

model does not represent a sequential chain of energy

flows in the strict sense. On the other hand, because of

the reticulate connections between a diversity of con-

sumers and resources that make up the food web, it

seems that, virtually, no constraints, but thermodynamic

ones, regulate the energy flow in the food web (Polis and

Strong 1996). According to this ‘‘multichannel’’ view of

the ecosystem, a great deal of opportunity would

arise for species to exchange energy with the other

components, no matter where and how far apart they are

in the web.

Understanding whether fundamental pathways for

energy flow exist is of great importance, as it may shed

light on movements of mass and energy in ecosystems,

and, in turn, on the nature of cycles, reciprocal

dependency of species and indirect effects, that are

crucial for ecosystem functioning (De Angelis 1992,
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Wootton 2002). In search for these pathways, the object

of interest in this study, we applied a simple analysis

based on graph theory on a set of published and

unpublished ecological networks. In particular, the

method makes use of the concept of strongly connected

component (Skiena 1990, Read and Wilson 1998).

Applied to ecological food webs, this concept refers to

subsets of species for which energy can flow from one

another and back. Looking for strongly connected

components in a series of ecological flow networks, we

identified the trophic hierarchy from producers to

consumers and found that ecosystems may be comprised

of subsystems that are sequentially connected by linear

chains of energy transfers. At the same time, however,

the possibility that strongly connected components

define subsystems within food webs depends on the

range of magnitude of links (flows).

Methods

Network models

Understanding fundamental passages of energy within

the ecosystem requires first that one knows who eats

whom and by how much. In this way the amount of

energy that flows from one species to another can be

assessed. Once this task is accomplished all this in-

formation can be condensed in a graph-like model that

provides an overall perspective of the trophic exchanges

between species. In such pictorial representation species

or aggregations of species (trophospecies), nutrient

pools, and detrital compartments are depicted as nodes

that are connected by arrows that represent energy

exchanges. These latter are the outcome of the trophic

interactions that are established between the trophospe-

cies. In general, these flows are measured as grams of

carbon per square meter per year (gC y�1 m�2). We

analyzed a series of ecosystems as network models

(all the systems, with respective references, can be found

in a single file for download at Robert Ulanowicz’s home

page http://cbl.umces.edu/�/ulan/). Because in any eco-

system there are components that exchange matter and

energy with the outside environment and also all the

living species dissipate a fraction of energy, in the

network models we analyzed we added three extra-nodes

to take into account these functions. These three special

nodes are: a) the input node, a node that stands for the

outside environment as provider of mater and energy to

the ecosystem and from which arrows reach those species

that in the real system import matter and energy from

the outside; b) the output node, that represents the outer

environment as sink of all usable exports; and c) the

dissipation node, that is the sink of the energy that is

dissipated by all the living components.

Strongly connected components

In an ecosystem the energy flows from producers to the

consumers of various level. Such directional flowing can

be appreciated in the graph-like model by following the

direction of the arrows that connect the nodes. By ideally

moving along these arrows we can connect, in principle,

any two nodes that are far apart from one another

several trophic steps. Whenever one such connection

exists, the combination of arrows that form it, is called

‘‘path’’. A ‘‘cycle’’ is a path that originates from one

species and returns to it. Strongly connected components

individuate the sets of trophospecies (vertices in the

network) that are reachable from each other, that is to

say the subset of species that are connected by cycles. In

each strongly connected component, for any two nodes

we can always find a path that goes from one to the

other and the way back. In an ecosystem there may be

one or more strongly connected components (SCCs). In

the former case it is always possible to move from one

species to any other in the whole system. When there are

more than one strongly connected component, energy

flows freely only within the SCC. Every strongly

connected component does not share any node with

the others, which means that SCCs form disjoint subsets

of vertices.

Cycle search usually requires a large amount of time,

as the number of operations to be performed (Mateti and

Deo 1976, Ulanowicz 1983) increases more than ex-

ponentially with the number of vertices in the network.

On the contrary searching for SCCs requires linear time

(the number of operations grows linearly with the

number of vertices and edges, Tarjan 1972). The simplest

algorithm that performs SCCs search is the one intro-

duced by Hopcroft and Tarjan (1973); it is explained in

detail in Appendix 1.

The number of vertices Si that belong to a certain

component defines its size jSij. If the size is one (the

node/species does not participate to any cycle), there are

three possibilities: a) it is a source, that is a species that

receives energy/matter from the outside and passes it to

the next in the web without receiving anything from

inside the system; b) the species/node is a sink, in which

the matter/energy enters and from there it may be only

exported/dissipated; c) the species is a cross-vertex that

connects two SCCs without participating to any cycle.

If the size of a strongly connected component is equal

to the total number of nodes, the graph is said to be

strongly connected (Bang-Jensen and Gutin 2000). In

this case cycling is possible between any pair of species.

If we imagine to represent any strongly connected

component that exists in a certain network by a unique

node, we obtain a simplified version of the ecosystem

network that describes the linear flow of energy from

producers to consumers, while cycling remains confined

within each SCC. This simplified network is called

directed acyclic graph (DAG). Because a DAG com-
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prises only one-way flows, it is a pictorial representation

of a hierarchy of dependencies involving groups of

species.

Topological sorting

According to the hierarchical nature of DAGs, a

procedure called topological sorting can be applied so

that one can visually order its components (that is the

SCCs) according to precedence constraints. In practice,

doing topological sorting one orders the various SCCs

from left to right. So that in this linear flowing any SCC

is preceded by the component that provides energy to it

and followed by the component that receives energy

from it. Topological sorting can be achieved in linear

time (Knuth 1997). In the framework of ecological flow

networks, it makes evident the fundamental linear path-

ways through which energy and matter travel in the

ecosystem. In other words, topological sort produces a

chain of donors (such as resources) and consumers that

makes up the sequential chain of energy flow. Accord-

ingly, a topological sort must include at least a node with

no incoming edges (source) and one with no outgoing

edges (sink). This may provide a possible taxonomy of

functional subsystems that govern energy transfer in the

ecosystem.

The methods presented above provide an easy and fast

way to a) individuate group of species that are strongly

linked with each other, sharing cycles that augment the

residence time of the matter inside the subsystem;

b) produce a simple structure that accounts of the linear

passage of energy matter between those subsystem.

Appendix 1 provides a more rigorous description of

the procedures.

Results

We examined 17 systems and found that each of them

was composed by at least 4 SCCs, namely {input}{out-

put}{dissipation}{species and nutrient pools}. The

‘‘special compartments’’ (Methods) are in fact SCCs

because {input} is a source and {output} and {dissipa-

tion} are two sinks for carbon. The Ythan Estuary

network (Baird and Milne 1981) matched with this

elementary scheme, with all the species grouped in one

SCC. All the other models included at least one further

SCC of size 1. This means that at least one compartment

is not strongly connected with the rest of the system. In

fact, for the other 16 networks, the bulk of {species and

nutrient pools} appears made of several ‘‘internal’’

SCCs. In most networks there are various SCCs of size

1 plus one very large SCC that comprises all the other

compartments. In four aquatic ecosystems, however, we

found two internal SCCs of size�/1. They are the

‘‘Chesapeake Bay’’ (Baird and Ulanowicz 1989), the

‘‘Baltic Sea aggregated’’ (Wulff and Ulanowicz 1989),

the ‘‘Charca de Maspalomas’’ (Alumnia et al. 1999) and

the ‘‘Upper Chesapeake’’ (Hagy 2002). Table 1 describes

the composition of each SCC in these four networks.

Using the standard aggregation technique for net-

works (Ulanowicz and Kemp 1979) and removing self-

loops created during this process, every SCC was

transformed into a single compartment. In this way, a

DAG for every network was obtained. Performing

topological sort on each DAG yielded a sequential chain

of energy flow. Using the Baltic Sea network as an

example, the entire process is pictorially represented in

Fig. 1. In it, one sees the network as it was originally

constructed (Fig. 1, upper) and its corresponding DAG

ordered according to topological sort (Fig. 1, lower).

Figure 2 shows the structure of the DAGs obtained from

the other networks listed in Table 1.

None of the 17 networks considered in this study

comprised only SCCs of size 1. In many of them at least

one very large SCC was identified. This is obvious

because a network made by only SCCs of size 1 does not

have cycles (acyclic network), and matter, once entered in

the system, would exit without being circulated, an

ecologically unrealistic situation. In the Ythan Esturay

the whole internal system participates to cycling, as there

is a unique SCC grouping all living and non-living

components. In the four networks listed in Table 1,

internal SCCs of size greater than 1 separate benthic

from pelagic species. That is cycling does not involve at

the same time benthic and pelagic species. In three out of

the four cases, fish that do not act as single SCC are

associated with the benthic community. Only in the

Upper Chesapeake network fish species contribute to

cycling in the pelagic compartment.

In all networks the producers appear as SCC of size 1;

this depends on the fact that carbon is the currency used

for the networks. In the Baltic Sea (Table 1, Fig. 1) there

are pelagic producers and benthic producers. The other

SCCs of size 1 are compartment #7, benthic suspension

feeders and #13, dissolved organic carbon. The former

receives energy from the pelagic SCC and cedes it to the

benthic SCC, while the latter receives energy from

pelagic producers (compartment #1) and transfers it to

the pelagic SCC. Both these variables are cross-vertices

for the system. The number of these SCCs in the four

networks changes depending on the level of resolution

adopted by the authors who parsed the networks. In the

Charca and Upper Chesapeake ecosystems most of these

SCCs are producers; on the contrary in the Chesapeake

Bay most of the SCC of size 1 are cross-vertex

components.

In all these networks pelagic and benthic SCCs include

at least a non-living compartment; in the Baltic Sea it is

suspended POC for the pelagic subsystem and sediment

POC for the benthic subsystem. Most part of the matter
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Table 1. Species composition for the internal SCCs identified in the four aquatic networks with two internal SCC of size greater than 1. The right column embeds all the single-species
SCCs. Names of compartments are those used by the authors who built up the networks.

Chesapeake Bay

Pelagic Benthic�/fish Size 1 SCCs
Zooplankton; ctenophores; Chrysaora fuscescens

(sea nettle); suspended POC; suspended bacteria; POC; ciliates; DOC
Other polychaetes; Macoma spp.; Meiofauna ;
crustacean deposit feeder; Micropogonias spp.
(croaker); Trinectes maculatus (hogchoker); spot;
Morone americana (white perch); Arius felis
(hardhead catfish); Pomatomus saltatrix
(bluefish); Paralichthys dentatus (summer
flounder), Morone saxatilis (striped bass);
sediment POC; bacteria in sediment POC; Nereis
succinea (polichaetes); Callinectes sapidus (blue
crab)

1. Phytoplankton; 4. Benthic diatoms; 5. Free
bacteria; 6. Heterotrophic microflagell.; 7. Other
suspended feeders 8. Mya arenaria ; 9.
Crassostrea spp. (oysters); 12. Anchoa mitchilli
(bay anchovy); 13. Brevoortia tyrannus
(menhaden); 15. Cynoscion regalis (weakfish); 14.
Alosa sapidissima (American shad); 11. Alosa
pseudoharengus (aalewife) & Coregonus artedi
(blue herring); 10. Fish larvae

Baltic Sea aggregated

Pelagic Benthic�/fish Size 1 SCCs
3. Pelagic bacteria; 4. Microzooplankton 5. Invertebrate carnivores;

6. Mesozooplankton; 14. Suspended POC;
8. Meiofauna; 9. Deposit feeders; 10. Benthic
invertebrates carnivores; 11. Planktivorous fish;
12. Carnivorous fish; 15. Sediment POC

1. Pelagic producers; 2. Benthic producers; 7.
Benthic suspension feeders; 13. DOC

Charca de Maspalomas

Pelagic Benthic�/Fish Size 1 SCCs
Mesozooplankton; suspended POC; DOC; pelagic bacteria;

microzooplankton
Benthic invertebrate carnivores; Liza aurata ;
Dicentratus punctatus ; sediment POC; benthic
microfauna; benthic deposit feeders; Diplodus
sargus

1. Cyanobacteria; 2. Eukaryotic phytoplankton;
3. Chara globularis ; 4. Ruppia maritima ; 5.
Cladophora spp.; 6. Periphyton;
8. Macrozooplankton; 10 Benthic suspension
feeder; 11. Gallinula chloropus

Upper Chesapeake

Pelagic�/Fish Benthic Size 1 SCCs
Heteroflagellates; rotifers; meroplankton; mesozooplankton; Anchoa

mitchilli (bay anchovy); ctenophores; cuspension feeding benthos;
Callinectes sapidus (blue crab); Brevoortia tyrannus (enhaden);
Alosa aeastivalis (herring) and Alosa sapidissima (shad); Morone americana
(white perch); spot; Micropogonias spp. (croaker); Trinectes maculatus
(hogchoker); Anguilla rostrata (American eel); Ictalurus melas (catfish); Morone
saxatilis (striped bass); Pomatomus saltatrix (bluefish); Cynoscion regalis
(weakfish); suspended POC; particle attached bacteria; DOC; free bacteria;
ciliates; Crassostrea spp. (oysters)

Benthic bacteria; meiofauna; deposit feeding
benthos; sediment POC

1. Net phytoplankton; 4. Chrysaora spp.
(sea nettle); 5. Microphytobenthos; 6. SAV; 7.
Picoplankton
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that is recycled in the subsystem passes through these

compartments.

Once a DAG is obtained one has a perspective of the

linear flow of energy that characterizes the ecosystem.

Figure 1 and 2 help to explain this concept as they show

the topologically sorted DAG obtained from the four

networks. In particular, Fig. 1 compares the original

network of the Baltic Ecosystem and its corresponding

DAG (Fig. 1, lower graph). What is striking in this graph

is that the pelagic subsystem supplies energy to the

benthic subsystem, which acts as internal sink for the

system. Energy flows from the pelagic compartments to

the benthic compartments but not the other way around.

This ordered sequence of energy transfer occurs also in

the Chesapeake Bay and the Charca de Maspalomas

ecosystem (Fig. 2 upper and middle graphs).

In the Upper Chesapeake (Fig. 2, lower graph) it is the

pelagic compartment that receives energy from the

benthic subsystem, but it does not act as a sink. It

behaves like a cross-vertex for Chrysaora spp., the unique

sink for this system. The Upper Chesapeake may seem

anomalous if compared with the other three networks

also because fish, usually at the top of the food chain,

belong to the pelagic SCC, that is they recycle matter

within the pelagic compartment. In all the other cases

top predators recycle within the benthic compartment.

These results yield for a qualitative (presence/absence)

description of trophic relations. Introducing quantities

would ensure the prospect of a robustness test. In fact, at

every passage between compartments, the energy/matter

is diminished according to thermodynamics, meaning

that recycling is based on weak connections, while linear

transfers could involve strong relations. We tested the

robustness of our results by considering the magnitude

of links and setting up a filter to determine the presence/

absence of edges. In particular, the filter was based on

the total amount of matter exiting every compartment:

dividing the weights of every outgoing edge by the sum

of all outgoing edges, we obtain their fractional im-

portance.

We sequentially increased the threshold from e�20 to

e0 and counted the number of SCCs produced consider-

ing in each run all the edges that had a fractional

importance higher than the threshold and pruning away

the others. The number of SCCs is upper bounded by the

number of compartments, as in an acyclic network the

number of compartments equals the number of SCCs. We

reported the fraction of edges removed together with the

number of SCCs. Only results for the Chesapeake Bay are

given here as the main conclusions can be applied to any

of the system investigated. Figure 3 shows the number of

SCC and the percentage of remaining edges as a function

of the threshold of magnitude for the links.

Fig. 1. Original network for
the Baltic Sea ecosystem
(upper graph) and its
topologically sorted DAG
(bottom-up perspective,
lower graph).
Correspondence between
numbers and names of
compartments is given in
Table 1.

168 OIKOS 110:1 (2005)



Our findings show how cycles are very sensitive

to weak edges removal. In Chesapeake Bay the

edges removal starts with the threshold e�14.1�/7.52E-

07, when just an edge is eliminated. The number of SCCs

starts increasing with threshold e�11.9�/6.79E-06

(7 edges out of 177 removed), rising up exponentially

until e�1.6�/2.02E-01 when only 31.6% of the edges

are still present. Starting from this threshold all the

compartments become SCCs, making the network

acyclic.

The fact that number of cycles/SCCs increases ex-

ponentially with the number of edges removed is not

surprising, but points out, once more, how food web

modeling is prone to sampling effort (we may expect that

weak edges individuation would require more sampling

effort than greater ones, Martinez et al. 1999), and how

the elimination of a small amount of trophic exchanges,

that may occur, for example, when the niche of a species

is exploited by another one with similar diet, could

completely reshape the cycling behavior of the ecosys-

tem.

Defining a threshold of magnitude to decide

which links appear in a food web is crucial. In the 4

networks that showed a benthic/pelagic division, such a

compartmentalization vanishes when resuspension

is included and the two subgroups melt down into

a unique big group. However the magnitude of

these links is so small that their functional role is

certainly less crucial than re-suspension in shallow

waters. For a more thorough discussion on the impor-

tance of trophic links in food webs see Raffaelli and Hall

(1995).
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Fig. 3. Results of threshold based edges removal. Horizontal
axis represents the threshold’s exponent l (threshold�/el); left
vertical axis accounts for the number of SCCs produced once
the weak edges have been pruned, right vertical axis for the
percentage of edges remaining.

Fig. 2. Topologically sorted DAGs (bottom-up perspective,
lower graph) of three aquatic networks. Correspondence
between numbers and names of compartments is given in
Table 1.
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Discussion

Resolving a number of ecological networks for their

strongly connected components and performing topolo-

gical sort on the associated direct acyclic graph has

shown that, although ecosystems comprise myriad

interaction links, they can form subsystems that are

sequentially connected by few linear chains of energy

transfers. This outcome immediately recalls to the

problem of whether or not food webs are divided into

compartments. May’s (1972) conjecture that food webs

are compartmented because blocking would enhance

stability has been challenged on the empirical ground.

Pimm and Lawton (1980), examining some real cases,

found no evidence that webs are arranged into blocks

based on dynamical constraints. Considering trophic

similarity as the degree to which species share predators

and prey, they found that probabilities of compartmen-

talization, averaged across all the food webs, were not

statistically significant. Raffaelli and Hall (1992) focused

on the same webs separately and found, without the

possibility to generalize their outcomes in a statistical

sense, that in several of those webs probability of

compartmentalization is high. In both these works

food webs were represented as undirected graphs in

which links described of feeding (predator�/prey) rela-

tionships.

Using directed graphs (food web graphs, sensu Cohen

1978), Yodzis (1982) was able to decompose food webs

into compartments using the ‘‘clique’’ concept, that is

grouping sets of species in which every pair had some

food resource in common. Dominant cliques are formal

structural objects that are uniquely identified by a

rigorous procedure, and help understanding how food

webs are organized in relation to the niche concept

(Cohen 1978). Strongly connected components, that also

are formal structural objects, on the other hand reveal

how food webs are organized around essential flows of

energy. To this end using cliques would not be possible

because they share species between one another.

Not always strongly connected components divide the

food web into compartments that group more than one

species. In the Ythan Estuary, for example, species

belong to a unique SCC, that is this ecosystem is not

compartmented, a result that matches with Raffaelli and

Hall’s (1992) conclusion based on trophic similarities.

Most of the 17 food webs we examined did not show

clear compartmentalization. This suggests that answer-

ing the original question, posed in terms of a dichot-

omous choice, ‘‘are food webs divided into

compartments?’’ does not add that much because, likely,

food webs behave differently from one another in this

respect. More interesting questions would be ‘‘in what

circumstances we observe compartmentalization in a

system or a certain class of systems?’’ and ‘‘is there any

pattern that describe compartmentalization, when it

exists, in food webs?’’ We reiterate, however, that

compartments emerged as a result of searching for

SCC, a procedure necessary to identify the trophic

hierarchy in the food webs.

The four ecosystems described in this paper show a

clear subdivision between pelagic and benthic subcom-

munities. For the Chesapeake Bay the same result was

obtained by Girvan and Newman (2002), who used new

approach to clustering based on the concept of ‘‘edge

betweeness’’ applied to the network graph and by

Krause et al. (2003), who searched for cohesive sub-

groups within the food web structure. In the former case,

however, the study was conducted using weighted net-

works, that is networks in which links are quantified,

while the latter utilized both quantitative both qualita-

tive data. Krause et al. (2003) did not find compartments

when they applied their method to the unweighted

network, and they drew the conclusion that the method

seems unable to identify compartments in unweighted

networks.

Basically in both these works the main focus is on

density or concentration of interaction. In our study

cycling is the main feature that eventually determines the

appearance of subgroups. Also, and more important, the

two approaches lead to different results. In fact Krause

and colleagues identify two compartments, whereas we

have two rather large SCC and a series of single species

SCC. Girvan and Newman (2002) too, identify ‘‘un-

determined’’ species, but they were less than the number

of single species-SCC we found. Second and most

important there is no exact correspondence of species

between our groups and theirs. This suggests that the

‘‘social’’ position that species or guilds occupy in

ecosystem and their functional role as distributors of

medium are linked in a complicated way that is largely

unknown and not easy to understand.

SCCs delineate how multiple reticulate connections

typical of food webs aggregate in essential linear path-

ways. When there is a unique SCC, as in the case of

Ythan Estuary, energy is free to cycle in the ecosystem.

Whenever there are SCCs of size greater than 1, only

exchanges between the SCCs are not totally free. They

are constrained by the flow patterns from sources to

sinks. So in the Baltic Sea, Chesapeake Bay and Charca

de Maspalomas benthic components do not supply

energy to pelagic ones, whereas the opposite occurs in

the Upper Chesapeake. Also many of the size 1-SCC do

not interact each other and determine parallel flow of

energy from sources to sinks. These results suggest that

impacts that can variously affect energy flows (e.g.

collapse of a prey population, variations in the primary

production) likely spread in the ecosystem according to

the flow pattern identified by the structure of SCC.

While experimental evidences may confirm or discard

this hypothesis, it must be reiterated that this study

cannot say anything about the distance up to which
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impacts propagate. This question has been explored both

empirically (Abrams et al. 1995, Menge 1995) and

theoretically (Yodzis 2000, Williams et al. 2002).

Williams et al., in particular, using the mean distance

between all nodes in a set of seven food webs (among

which the Chesapeake Bay and the Ythan Estuary

discussed here) found that the vast majority of species

are not isolated so that impacts may affects more species

than is often appreciated. In their research Williams

et al. used undirected networks and in so doing they

could not explore the problem of directions of impacts.

On the other hand our results suggest that impacts

cannot spread in any direction but only according to

the flow patterns established by the SCCs and their

sorting. Rather than seeing the two approaches in

contrast with one another we perceive the potential for

their integration.

The fact that SCCs impose constraints to energy flows

does not discard the intrinsic complexity of food webs in

favor of a trophic level-based view of nature (Polis 1991,

Polis and Strong 1996). However, the results obtained by

focusing on SCCs need to be accommodated in the

framework of food web theory, which is not an easy task

because SCCs neither contribute to define trophic levels

(within the same SCC we can find primary producers,

omnivores and predators as well) not their topological

sorting separate the grazing and the alimentary chains

(e.g. detrital components are present both in the pelagic

and benthic SCC in the 4 selected ecosystems).

The presence of many SCCs of size equal to 1 implies

that a high number of compartments do not take part in

cycling. Since cycling activity defines ecosystem maturity

(Odum 1969, Ulanowicz 1996) and may be used to

identify conditions of stress for the ecosystem (Odum

1985, Ulanowicz 1996) these SCCs could be used as an

additional feature to describe ecosystem health. To this

end, however, a more robust relationship linking SCCs

structure with ecosystem properties must be found.

SCCs acting as cross-vertices (in the Chesapeake Bay,

they are the filter feeding communities) may also play an

important role in the distribution of energy. This

depends on the amount of currency that is channeled

through them and their position in relation to the other

SCCs; a quantitative study based on flow values and

energy budget could shed light on this point.

SCCs analysis could be a useful approach to integrate

the standard procedures of network analysis. Strongly

connected components are ‘‘de facto’’ linearly coupled

subsystems. In this respect they might be treated as

independent networks for which the rest of the system

can be apportioned to the input and output environ-

ment. Accordingly, one could perform network analysis

on every SCC, unveiling, with respect to the whole

ecosystem, its role in the circulation of matter and

energy, its contribution to dependencies between com-

partments, and its contribution to create causal chains of

indirect effects.

As a final point we stress that the results presented

here are currency-sensitive; that is, nutrient flow net-

works (i.e. N and P) likely would have different SCCs,

leading to different architecture for the DAGs. In

particular, we expect that the conclusion that recycling

remains confined within each SCC would be challenged

in nutrient flow networks. These issues that will be

discussed in detail elsewhere.

Conclusion

In this work we analyzed ecological flow networks

searching for strongly connected components and used

a series of models described in the literature. Being a

network a model of an ecosystem there is a risk that

results of SCCs analysis are an artifact of the particular

structure of the data (i.e. criteria to construct networks).

By selecting several networks built by different authors

we tried to minimize the bias due to each author’s

perspective in building networks as for the level of

resolution (i.e. single species vs guilds) and structure of

flows.

By this analysis we show that trophic hierarchies can

be identified so that one has a clue about the sequential

chain of energy flow in ecosystems; also, studying SCCs

we found that compartmentalization in ecosystems is

possible but it is not a general rule. Empirical evidences

coupled with further modeling applications must be

produced to corroborate these findings. In this respect

what presented here should not be intended as a final

statement about ecosystems functioning; rather it is only

a trajectory for further research.
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Appendix 1

1) Notation and concepts

We define an ecological network as a directed graph

(digraph) G(V,E) with V vertices, the species/trophospe-

cies or nutrient pools, and E oriented, weighted edges,

the trophic exchanges, usually measured as grams of C

for hectare for year (or other currencies, according to the

aim of the research).

We represent the digraph as an adjacency matrix,

that is to say a squared V�/V matrix where every

coefficient represents the flux of matter from row-vertex

to column one. If the edge does not exist the coefficient

will be 0.

A strongly connected component (SCC) of the

graph is a maximal subset of vertices set U⁄/V where

for any u1, u2 �/U, there is at least a directed

path (sequence of vertices and edges) from u1 to u2

and one from u2 to u1, so that u1 and u2 are

reachable from each other. The vertices of any directed

graph can be partitioned into n strongly connected

components S1, . . ., Sn where V]/n. Strongly connected

components do not share vertices with each other

(disjoint sets).

The size of a strongly connected component jSij is the

number of vertices belonging to the ith of these

components. A SCC with jSij�/1 can be only a source

(a vertex with just outgoing edges), a sink (just incoming

edges) or a cross-vertex, that is a node connecting two or

more SCCs. If the size of a strongly connected compo-

nent is equal to the total number of nodes, jSij�/V, the

graph is said to be strongly connected. If a digraph

encompasses more than 1 strongly connected compo-

nent, it will have no Hamiltonian cycles, that is cycles

that visit all the vertices in the graph; this is because

cycles involving vertices in different SCC are not possible

(Bang-Jensen and Gutin 2000); in fact all the cycles in
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the graph remain confined into its strongly connected

components.

Aggregating vertices inside every SCC yields a

directed acyclic graph (DAG). Because a DAG com-

prises only one-way edges, it is a pictorial representation

of a hierarchy of dependencies involving graph compo-

nents. For ecological flow networks such hierarchy

pertains the transfer of mass/energy throughout the

system.

According to the hierarchical nature of DAGs,

a procedure called topological sorting can be applied

so that one can order graph elements according to

precedence constraints. Thus, given a directed acyclic

graph G’(V’,E’), a topological sort is a linear ordering of

all its vertices from left to right, such as for every edge

(ev1,v2 �/E’), v1 precedes v2 in the order of vertices. A

topological sort must include at least a source and a

sink.

2) Finding SCCs

In order to find SCCs in a digraph we should perform

two depth first search-DFS visits: the first one on

the digraph, the second one on its transposed form,

that is to say with all the edges with inverted directions.

Exploring a graph in search of SCCs requires a calcula-

tion effort that is linearly proportional to the graph size,

considering vertices and edges (U(V�/E)) (Tarjan 1972).

The simplest algorithm for SCCs (Hopcroft and Tarjan

1973) has been used here. See below for a ready to use

code.

3) Aggregating SCCs

Once obtained the SCCs, we should lump together

all the vertices belonging to the same component. We

utilized the algorithm proposed by Hirata (1978)

that has been extended in Ulanowicz and Kemp (1979)

work. Because of in our analysis we need just topological

values (presence/absence of edges), the aggregation

procedure is simplified. We may describe this

process as an homomorphic mapping f from digraph

G(V,E) to G’(V’,E’) (Hirata and Ulanowicz, 1985),

that is to say a surjective map of the graph. The

aggregation process causes self-loops to be created: these

self-loops (diagonal coefficients on the adjacency matrix)

have been eliminated before running the topological

sorting.

4) Topological Sorting

Topological sorting orders, in linear time (Knuth 1997),

the vertices and edges of a DAG in a simple and

consistent way; hence, in the framework of ecological

flow networks, it makes evident the fundamental linear

pathways that energy and matter use to travel in the

ecosystem. In other words, topological sort produces a

chain of donors (such as resources) and consumers in a

succession of steps that highlights the linear fundamen-

tal flux of matter, which enters the system and leaves it,

after a certain time that is affected by cycling.

5) Programming SCCs, DAG and topological sort

Here below a complete software in C that accomplishes

all the procedures performed in the paper is presented.

The code requires GSL (GNU Scientific Library,

www.gnu.org/software/gsl).

/*

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - Strongly Connected - - - - - - - - - - - - - - - - - - - - - - - -

- - this is a sample code - - - - - - - - - - - - - - - - - - - - - - -

- - allesina@msu.edu - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
INPUT: Matrix File

OUTPUT: SHELL or FILE
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
COMPILING:

gcc scc.c -o SCC -lgsl -lgslcblas -O2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RUNNING:

./SCC test.txt

test.txt contains

1st line: nubmer of compartments �/�/N

2nd line . . . N�/1th line Adjacency matrix

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

//Libraries must include GSL

//http://sources.redhat.com/gsl/

*/

#include B/stdio.h�/

#include B/gsl/gsl_matrix.h�/

#include B/gsl/gsl_vector.h�/

#include B/gsl/gsl_blas.h�/

#include B/gsl/gsl_permutation.h�/

#include B/gsl/gsl_sort_vector_double.h�/

//Global Variables

int N; //number of vertices

gsl_matrix * M; //the adjacency matrix

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

//VARS STRONGLY CONNECTED COMPONENTS

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
gsl_vector * DFSC; //colour

gsl_vector * SCCS; //belonging SCC

gsl_vector * DFSD; //Discovery

gsl_vector * DFSF; //Finishing

gsl_permutation * DFSOrder;

int DFS_T; //Time

int SCC_Num; //SCC count
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// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//VARS AGGREGATION
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

gsl_matrix * Agg; //the aggregation matrix

gsl_matrix * DAG; //Resulting DAG once the Sccs have

been aggregated
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

//INPUT READING
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
int ReadFile(char * myfile)

{

char *line�/NULL;

FILE *fp;

int i,j,tmp;

printf (‘‘\nOpening:%s\n’’, myfile);

if ((fp�/fopen (myfile, ‘‘r’’))�/�/NULL)

{

printf (‘‘Cannot open the file!!!\n’’);

return 1;

}

fscanf(fp,‘‘%d\n’’,&N);

printf(‘‘Number of vertices:%d\n’’,N);

M�/gsl_matrix_calloc(N,N);

for (i�/0;iB/N;i�/�/)

{

for (j�/0;jB/N;j�/�/)

{

fscanf(fp,‘‘%d’’,&tmp);

gsl_matrix_set(M,i,j,tmp);

}

fscanf(fp,‘‘\n’’);

}

//print the adjacency matrix

printf(‘‘\nAdjacency matrix\n’’);

PrintMat(M);

return 0;

}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//PRINT A MATRIX
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
int PrintMat(gsl_matrix * C)

{

int i,j;

for (i�/0;iB/N;i�/�/)

{

for (j�/0;jB/N;j�/�/)

{

printf(‘‘%1.0f\t’’, gsl_matrix_get(C,i,j));

}

printf(‘‘\n’’);

}

return 0;

}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//AGGREGATION INTO DAG
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
int AggMat(void)

{

gsl_matrix * M1;

gsl_matrix * M2;

int i,j,k;

double z;

M1�/gsl_matrix_calloc(N,N);

M2�/gsl_matrix_calloc(N,N);

for(i�/0;iB/N;i�/�/)

{

for (j�/0;jB/N;j�/�/)

{

z�/0;

for (k�/0;kB/N;k�/�/)

{

z�/z�/gsl_matrix_get(Agg,i,k)*gsl_

matrix_get(M,k,j);

}

if (z�/0)

{

z�/1;

}

gsl_matrix_set(M1,i,j,z);

}

}

for(i�/0;iB/N;i�/�/)

{

for (j�/0;jB/N;j�/�/)

{

z�/0;

for (k�/0;kB/N;k�/�/)

{

z�/z�/gsl_matrix_get(M1,i,k)*gsl_matrix_

get(Agg,j,k);

}

if (z�/0)

{

z�/1;

}

gsl_matrix_set(M2,i,j,z);

}

}

//Remove Self Loops

for(i�/0;iB/N;i�/�/)

{

if (gsl_matrix_get(M2,i,i)�/�/1)

{

gsl_matrix_set(M2,i,i,0);

}

}

//Build Dag

DAG�/gsl_matrix_calloc(SCC_Num,SCC_Num);

for(i�/0;iB/SCC_Num;i�/�/)

{

for(j�/0;jB/SCC_Num;j�/�/)

{

gsl_matrix_set(DAG,i,j,gsl_matrix_

get(M2,i,j));
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}

}

return 0;

}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//STRONGLY CONNECTED COMPONENTS
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
int DFS (int i,int tras)

{

int k;

DFS_T�/�/;

gsl_vector_set(DFSC,i,1);

gsl_vector_set(DFSD,i,DFS_T);

if (tras�/�/1)

{

gsl_vector_set(SCCS,i,SCC_Num);

}

for (k�/0;kB/N;k�/�/)

{

if(gsl_matrix_get(M,i,k)�/0)

{

if (gsl_vector_get(DFSC,k)�/�/0)

{

DFS(k,tras);

}

}

}

DFS_T�/�/;

if (tras�/�/0)

{

gsl_vector_set(DFSF,i,-DFS_T); //reverse

}

gsl_vector_set(DFSC,i,2);

return 0;

}

int SCC (void)

{

int i,l;

printf (‘‘\nSTRONGLY CONNECTED

COMPONENTS\n’’);

SCC_Num�/0;

DFSC�/gsl_vector_calloc(N);

DFSD�/gsl_vector_calloc(N);

DFSF�/gsl_vector_calloc(N);

SCCS�/gsl_vector_calloc(N);

DFSOrder�/gsl_permutation_calloc(N);

DFS_T�/0;

for (i�/0; iB/(N); i�/�/)

{

if (gsl_vector_get(DFSC,i)�/�/0)

{

DFS(i,0);

}

}

//order the nodes

gsl_sort_vector_index(DFSOrder, DFSF);

//repeat DFS search on the transpose ordering nodes

by time

gsl_matrix_transpose(M);

//re initialize vectors

DFSC�/gsl_vector_calloc(N);

DFSD�/gsl_vector_calloc(N);

DFS_T�/0;

//starts DFS

for (i�/0; iB/(N); i�/�/)

{

if(gsl_vector_get(DFSC,gsl_permutation_get

(DFSOrder,i))�/�/0)

{

DFS(gsl_permutation_get(DFSOrder,i),1);

SCC_Num�/�/;

}

}

//Allocate Aggregation Matrix

Agg�/gsl_matrix_calloc(N,N);

//lists the SCCS

for (i�/0; iB/(SCC_Num); i�/�/)

{

printf (‘‘\nStrongly Connected Component

#%d\n’’,i);

for (l�/0;lB/(N);l�/�/)

{

if (gsl_vector_get(SCCS,l)�/�/i)

{

printf(‘‘%d\t’’,l);

gsl_matrix_set(Agg,i,l,1);

}

}

}

//re-transpose the matrix

gsl_matrix_transpose(M);

printf (‘‘\nNumber of Components:%d\n’’,

SCC_Num);

return 0;

}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//TOPOLOGICAL SORT
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
int Toposort(int i)

{

int k,z;

DFS_T�/�/;

gsl_vector_set(DFSC,i,1);

gsl_vector_set(DFSD,i,DFS_T);

for (k�/0;kB/SCC_Num;k�/�/)

{

if(gsl_matrix_get(DAG,i,k)�/0)

{

if (gsl_vector_get(DFSC,k)�/�/0)

{

Toposort(k);

}
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}

}

DFS_T�/�/;

gsl_vector_set(DFSC,i,2);

//Print the component

printf(‘‘[’’);

for(z�/0;zB/N;z�/�/)

{

if(gsl_vector_get(SCCS,z)�/�/i)

{

printf(‘‘%d ’’,z);

}

}

printf(‘‘]B/–’’);

return 0;

}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//MAIN
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
int main(int argc, char *argv[])

{

int i,j;

//reads the command line: filename.txt

char *myfile;

myfile�/argv[1];

printf(‘‘\nSelected file:%s\n’’, myfile);

//reads the File

j�/ReadFile(myfile);

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//start
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

//Strongly Connected Components

j�/SCC();

//Aggregation into DAG

printf(‘‘\nAGGREGATION MATRIX\n’’);

PrintMat(Agg);

//aggregate the compoments

j�/AggMat();

printf(‘‘\nResulting Directed Acyclic Graph\n’’);

for (i�/0;iB/SCC_Num;i�/�/)

{

for (j�/0;jB/SCC_Num;j�/�/)

{

printf(‘‘%1.0f\t’’, gsl_matrix_get(DAG,i,j));

}

printf(‘‘\n’’);

}

//Topological Sort

DFSC�/gsl_vector_calloc(SCC_Num);

DFSD�/gsl_vector_calloc(SCC_Num);

DFSF�/gsl_vector_calloc(SCC_Num);

DFS_T�/0;

printf (‘‘\n TOPOLOGICAL SORTING\n’’);

for (i�/0; iB/SCC_Num; i�/�/)

{

if (gsl_vector_get(DFSC,i)�/0)

{

Toposort(i);

}

}

printf(‘‘\n\n’’);

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//stop
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
return 0;

}
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