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Abstract
Food webs seem to possess scale invariant attributes among which efficiency has been recently included. Considering food

webs as transportation networks it has been shown that minimum spanning trees, topologies that minimize cost for delivering

medium, satisfy a universal scaling relation. It is not clear, however, whether resource distribution follows the criterion of

minimum cost, because longer, less efficient routes are used as well. Because of this, instead of focusing on minimum length

spanning trees (MLST) we consider directed acyclic graphs (DAGs) as better descriptors of food web hierarchies. Twenty well

known empirical food webs have been transformed into DAGs and a scaling relation has been observed between number of

nodes and their level of effective connectivity. Although we derived the scaling relation for DAGs using topological arguments,

the exponent of the equation C / Ah shows same mathematical properties than its functional counterpart computed through flow

analysis. This suggests that h can be used as a proxy for efficiency in food webs. The values of this coefficient for DAGs are lower

than the ones obtained for minimum spanning trees, suggesting that food webs lie in the range of medium-to-low efficiency

networks. This challenges the idea that these systems would be more efficient than other types of networks.

# 2005 Published by Elsevier B.V.
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1. Introduction

Scientists always look for invariant properties in

the understanding that these attributes help to unveil

organizing principles of nature (Rodriguez-Iturbe and

Rinaldo, 1996; West et al., 1999). Ecologists are not
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exceptions in this respect. Food web ecology, in

particular, has become a particularly fertile arena for

discussion about invariant properties. Several food

web features, such as chain length, predator/prey ratio,

fraction of species that occupy definite trophic

positions, and number of connections per species,

have been documented to be scale-invariant (Briand

and Cohen, 1984, 1987; Sugihara et al., 1989). In

parallel, however, other authors have cast doubts on

the validity of these findings, inflating a debate whose
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most significant outcomes have populated scientific

journals (Havens, 1992; Martinez, 1992, 1993, 1994;

Deb, 1995; Bersier and Sugihara, 1997).

One recent study (Garlaschelli et al., 2003) states

that the allometric equation C / Ah (universal scaling

relation) that applies to transportation networks (rivers

and metabolic networks, Banavar et al., 1999), holds

also for food webs. Extending the original definitions,

A would measure the amount of energy entering at any

single node of the web and C would represent the total

quantity of resource in the food web at any instant of

time. The scaling exponent h would measure the

efficiency of transfer, intended not as the usual trophic

efficiency of transfer from one trophic level to another,

but, rather, an overall measure of the extent at which

the network optimizes resource delivery (Banavar

et al., 1999, 2000; Garlaschelli et al., 2003).

The scaling exponent h ranges from 1 to 2 when

there are no Euclidean dimensions to consider (e.g.

this is not the case of river network or blood

circulation) (West et al., 1999). These two extreme

values pertain, respectively, a star-like structure,

where all the nodes are directly connected to a central

node (source) representing the external environment

(maximum efficiency, h � 1), and a chain-like

structure, in which the nodes are sequentially linked

with each other starting from the environment

(minimum efficiency, h � 2). The ‘‘source vertex’’,

or environment, represents the ultimate source of

energy or resources for the network; it will be called

‘‘root’’ henceforth.

The allometric relation has been derived assuming

that energy distributes to species in the web network
Table 1

The 20 ecological networks analyzed

System # Nodes # Edges # MLST # DAG S

Cone Spring 6 10 5 7 U

Cedar Bog Lake 10 22 13 15 M

Somme Estuary 10 27 17 19 C

Ythan Estuary 14 41 16 26 L

Baltic Sea 16 43 19 33 M

Crystal River 22 64 28 45 S

Charca de Maspalomas 22 61 31 48 G

Lago Scuro 26 199 116 149 C

Narragansett 33 161 82 120 M

Lower Chesapeake 35 128 51 93 F

# Nodes is the number of nodes (including the root); # edges is the number

remaining using MLST procedure; # DAG is the number of edges remainin
using minimum length spanning trees (MLST),

topological architectures made of the minimum

number of links necessary to keep the graph

connected. In ecological terms, thus, a minimum

spanning tree can be seen as the collection of pathways

that allows energy (food) to reach all species at the

minimum cost. When the magnitude associated with

links is not specified, and there is no dissipation, this

minimum cost exactly corresponds to the minimum

distance from every node to the root, and the

calculation of A and C is simplified. So Ai (i = 1, 2,

3, . . ., k nodes) becomes the number of species that

feed directly or indirectly on i and Ci simply adds up

the A values over the same set of nodes. This definition

matches with the general one studied for other

transportation networks only if the graph is tree.

If energy delivery in ecosystems was organized

according to the criterion of minimum cost, the food

webs would reduce to minimum spanning trees, with

massive removal of links (see, for example, Table 1)

and oversimplification of trophic hierarchies. Ecolo-

gical consequences would be a null importance of

omnivory and drastic changes in many species’

trophic behavior. Studies on food web (Polis and

Strong, 1996; Bondavalli and Ulanowicz, 1999), on

the other hand, have revealed that matter and energy

circulate in complex ways, longer pathways contribute

to resource allocation in food webs as well, and

trophic behaviors are not as simple as described by

spanning trees. Thus, minimum spanning trees over-

simplify the trophic portrait of ecological organization

and one may ask whether food webs obey allometric

scaling as predicted using spanning trees. To explore
ystem # Nodes # Edges # MLST # DAG

pper Chesapeake 35 168 58 124

iddle Chesapeake 35 160 66 113

hesapeake Bay 37 126 54 101

ake Michigan 37 177 81 141

ondego Estuary 44 357 133 227

t. Marks River 52 297 151 258

ramminoids Marshes 67 798 239 537

ypress wet season 69 565 235 456

angrove 96 1367 368 1182

lorida Bay 126 1956 916 1730

of edges before cycles are removed; # MLST is the number of edges

g using DAGs. See Supplement for complete data set and references.
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this issue we thought that more appropriate descriptors

for food web could be directed acyclic graphs (DAGs,

henceforth).

Twenty selected food webs, obtained from energy

flow networks pertaining to different ecosystems and

that were described in literature, have been reduced to

DAGs. While showing that these topologies are better

representations of food webs than minimum spanning

trees, we prove that a scaling relation for these

structures can be found on a topological basis. Taking

advantage of the properties of linear algebra, we

propose a tentative ecological meaning for parameter

C of the scaling relation, which has never been clearly

defined for food webs (Garlaschelli et al., 2003). We

show also that our scaling exponent has same

mathematical properties than its original counterpart

(Banavar et al., 1999).

This makes possible using it as a proxy for

efficiency in food webs. The twenty DAGs we

analyzed show lower efficiency than the correspond-

ing minimum spanning trees, challenging the idea that

food webs are more efficient than other types of

networks (Garlaschelli et al., 2003).

Recent investigations (Dodds et al., 2001;

Kozłowski and Konarzewski, 2004; Makarieva

et al., 2003, 2005) highlighted some controversial

aspects inherent in the distributive network models

proposed by West et al. (1999) and Banavar et al.

(1999). Such inconsistency concerned the value of the

scaling exponents that the former authors calculated as

multiple of 1/4 instead of the expected 1/3. In this

work, we do not consider the Banavar exponent as a

reference value for food webs; rather, in developing

our argument we are only interested in comparing

mathematical properties for the new exponent we

calculate for food webs: in doing so we will be able to

propose an ecological meaning for it.
Fig. 1. A hypothetical food web (a) and its sub-graphs correspond-

ing to a minimum spanning tree (b) and the directed acyclic graph (c)

(in this case no edge has been removed because the original network

was already acyclic). A and C are given inside and outside each node,

respectively. The filled circle designates the root node (modified

from Garlaschelli et al., 2003).
2. Food webs: a comparison between minimum

length spanning tree (MLST) and directed

acyclic graph (DAG)

Rooted spanning trees (the notion of tree comes

from Cayley, 1891) are collections of N � 1 nodes,

which are attached, directly or indirectly, to an origin

node called root. N � 1 edges (directed links) make

these structures connected. In particular, in these
topologies a single path connects each node to the

root. Main steps of the algorithm used in searching for

spanning trees are detailed in Appendix A. Spanning

trees can be identified in any connected graph. The

minimum length spanning tree of a graph defines the

subset of edges that minimize the length of the paths

from the root to every node and yet maintain the graph

connected.

Graphs are used to represent ecological food webs.

Nodes and edges are, respectively, the trophospecies

and their feeding interactions. The root here represents

the external environment, the ultimate provider of

energy to the whole web. Searching for MLST in a

food web graph means identifying the shortest

pathway that connects every species to the environ-

ment. An example of minimum length spanning tree is

depicted in Fig. 1b, in which the root is the black

vertex. This graph originates from the hypothetical

food web of Fig. 1a.

Banavar et al. (1999, 2000) derived an allometric

relation between the quantity of resource exchanged at

node i (Ai) and the cost of its transfer (Ci) for the most

efficient class of transportation networks in a wide

variety of systems. Garlaschelli et al. (2003) extended

this allometric relation to food webs, once reduced to

MLST.

The two parameters, A and C, are like fingerprints

for every node. For food webs (Ai) is the number of

species that directly or indirectly feed on the ith node

plus the node itself; adding up these values for the ith

node (i.e. summing all the values of A pertaining its

direct or indirect predators) yields Ci. It has to be noted

that for food webs the two parameters have been

calculated on a pure topological basis, whereas
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1 While there is no problem in computing A in the presence of

closed structures that are not circuits, the presence of directed cycles

complicate the computation because they form pathways of an

infinite length.
Banavar et al. (1999) approached the question in a

functional way. Only the particular structure of MLST

allows extending the theoretical results known for the

general definition of A and C (including the theorem

yielding the limits 1 > h > 2, Banavar et al., 1999) to

the results obtained by Garlaschelli and colleagues. In

fact, when the link magnitude is not specified, and

there is no dissipation, the minimum cost corresponds

exactly to the minimum distance calculated from

every node to the root: the functional approach and the

topological one matches with one another.

Here, we face some problems. First, a clear

ecological meaning for C has never been introduced.

In the flow-based approach each node in the tree is

assumed to consume one unit of currency; it follows

that what enters node i, that is (Ai), must be sufficient

to satisfy the requirement of that node and that of all

the nodes that depend on it for their requisite medium.

In this case C is obviously a cost function because it

computes the whole amount of currency needed to

maintain that set of nodes at any instant of time. When

A is computed as the number of direct and indirect

predator feeding on every node, the meaning of C as

cost function remains somehow vague.

Second, there is a problem regarding food web

representation. As a first step in the MLST search

species are assigned to integer levels (Appendix A)

that are calculated as the minimum possible distance

from the root, which occupies conventionally level 0.

All the nodes that are linked directly to it belong to

level 1; those directly connected with the latter occupy

level 2, and so forth. Thus, a minimum length

spanning tree ordinates species along the energy route

in a similar way that Lindemann’s (1942) trophic

hierarchy does. If a species feeds both as a primary

carnivore and a secondary carnivore it will be assigned

to primary carnivores in the MLST, as this role implies

a shorter connection to the root in terms of trophic

steps. With reference to Fig. 1a the top-right node,

which behaves partially as a top predator, is reduced to

a primary consumer in the corresponding MLST

(Fig. 1b). Thus, from an ecological point of view,

ecosystems becomes oversimplified when described

by MLST (Polis, 1991; Abrams et al., 1996; Raffaelli

et al., 2002).

By using integer trophic levels in the way the

MLST does, a variety of different trophic hierarchies

are reduced to the same one because species with
different discrete trophic positions are assigned to the

same trophic level. It is like whether a high number of

species, say n = 100, were ordered in a lesser number

of trophic levels, say l = 6. The maximum number of

trophic hierarchies (ordered sequences of trophic

levels), ranging from the linear chain (n trophic levels

with one species each) to a uniform community (a

single level containing all species) is:

Hl;n ¼
Xl

j¼1

ðSð j; nÞ j!Þ!H6;100 ¼
X6

j¼1

ðSð j; 100Þ j!Þ

¼ 6:53E þ 77;

where S(j, n) is the corresponding Stirling number of

the second kind (Appendix B). Although this number

is very high the fraction of hierarchies (with no bias)

that can be formed by grouping 100 species in 6

trophic levels is (H6,100/H100,100) = 1.17 	 10�96. This

means that many food webs are represented by the

same structure/hierarchy, even if they were different

before applying MLST: an over-simplification of food

web hierarchy.

Directed acyclic graphs overcome these difficul-

ties. They preserve multiple links, pruning away only

those necessary to close directed cycles (feedback

arcs). In the MLST procedure any edge from a node j

to a node k is removed if the level assigned to j is

greater or equal than k’s. This produces a drastic

reduction in the number of links with respect to the

original food web. In a DAG only the feedback edges

in the depth first search tree of the root node vanish

(Appendix C). In other words, only those edges that

point back to a node that has been already visited are

removed when food webs are explored starting from

the root. In summary, the MLST simply excludes all

closed structures (compare Fig. 1a with its MLST in

Fig. 1b). Whereas the DAG retains any closed

structure that is not a circuit, being the latter a

sequence of links that leaves a node and return to it by

following the direction of links.1 Because there are no

true circuits in the web of Fig. 1a its structure is

preserved in the corresponding DAG (Fig. 1c). In a

MLST the maximum number of links is N � 1 (N,



S. Allesina, A. Bodini / Ecological Complexity 2 (2005) 323–338 327
number of nodes) whereas in a DAG it is higher, and

equal to N(N � 1)/2.

Because multiple pathways are retained in DAGs

also the trophic identity of the species remains

unaltered, as shown by the top-left node of the web

of Fig. 1a. It follows that DAGs do not alter the

structure of the hierarchies. Because they are more

conservative in terms of trophic structure than MLST,

DAGs are plausible representations of the trophic

complexity of food webs (Polis and Strong, 1996).

Another virtue of these structures is that there exists

only one DAG for any food web graph, once the root

node has been specified. On the contrary many

spanning trees can be traced in a food web, and, to find

a relationship between A and C, each value of A must

be compared with the average of the corresponding

values of C (Garlaschelli et al., 2003).

The computation of A and C for a DAG is the same

as for MLST: Ai counts the number of reachable nodes

(direct and indirect predators) from node i; Ci, the sum

of the A values for the same set of nodes plus Ai.

However, when computed for a DAG, A and C do not

match with their flow-based counterparts (Banavar

et al., 1999). Consistency holds only for MLST. To

make this point clearer, consider node d in Fig. 1c. Cd,

computed by adding up the A values of the nodes that

receive food from d, is equal to 17. Recalling the

original definition for C this value would equal the

amount of flow units necessary to keep alive this group

of nodes, if each of them needs one flow unit, as it is

usually assumed. However, because the pathway

d ! f ! g ! e provides the unit flow necessary to

sustain e, what comes to it via the other path

d ! c ! b ! e gives rise to an excess energy to this

node. In synthesis, C = 17 would overestimate the flow

requirements of the group of nodes that depends on d.

That is to say, using A and C values computed as we

have done as synonymous of flow units, would yield

systematic over estimations. This is due to the

presence of multiple links that point to the same

node. In the case of MLST such overestimation does

not occur as there is only one link pointing to any

node.

So, in this analysis while Ai is the number of nodes

reachable from node i, Ci computes the number of all

pairs ‘‘origin-destination’’ that can be identified in the

set of nodes that depend on node i and that can be

identified in the graph following the direction of links.
Using linear algebra (see Appendix D for details) this

calculation is facilitated because it is simply the

number of non-zero coefficients of the matrix

PDAG = [I � TDAG]�1, where I is the identity matrix

and TDAG, the adjacency matrix of the sub-graph

formed by the ith node and all its predators. In this

matrix, every non-zero coefficient witnesses that a

pathway exists between the row node and the column

node. Thus, Ci measures the overall number of

effective connections between nodes belonging to the

subset that depends on node i. We call these

connections ‘‘effective’’ because they include indirect

linkages, whereas in food webs usually two node are

said to be connected if there is a direct junction

between them. Although any coefficient in matrix

PDAG shows the number of pathways between any two

nodes, C is equal to the number of these non-zero

terms: only the fact that the row node sees somehow

the column node matters, independently from how

many paths make their connection possible. While Ci

quantifies the level of connectedness of the subsystem

that depend on node i through both direct and indirect

paths, it also gives a perception of how extended are

the branches in a DAG (and in the food web).

We derived the bounds for C and A values for a

generic DAG, and found that they do coincide with the

ones for MLSTs (Appendix D). In particular, C values

are bounded to the maximum possible number of

couples of nodes origin-destination that in theory can

exist in the food web. We also demonstrate that it is still

possible to compare A and C for DAGs and MLSTs and

they have the same topological (and ecological)

significance. We stress that, although a DAG is usually

not a tree, a tree is always a DAG. The procedure

presented here can therefore be seen as the generalized

case of the one presented by Garlaschelli et al. (2003).

The level a certain node belongs to in a spanning

tree depends on where the root is positioned. Although

the literature is full with examples of food web

structures (Cohen et al., 1990; Menge, 1995, and see

references in Montoya and Solé, 2003) in many of

these, however, the environment is not explicitly

considered and its position has to be imposed.

Common sense intuition would suggest linking the

root to basal species, those having no incoming edges.

The main point here is that root position affects the

trophic level a certain species is assigned to, and

ambiguities about which species import resource from
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outside the system render trophic hierarchies in MLST

extremely uncertain.

Searching for a DAG does not require assigning

each variable a level, but root’s position must be

defined anyway because also its structure depends on

where the source vertex is positioned. To avoid

ambiguities with respect to this we derived our food

webs from energy flow networks, in which the root

position is determined by input flows (Ulanowicz,

1997; Ulanowicz et al., 1998). To perform this study

we used 19 published and 1 unpublished networks (see

Table 1) in which the number of species ranges from 5

to 125 (m = 38.5, s = 30). We point out here that in

these energy flow networks most species are trophic

species, that is taxa organized to represent living

compartments based on probable diet and life history

characteristics. Only a few nodes of the networks are

representative of taxonomic species.
3. Results

Main features of the 20 selected food webs are

described in Table 1. They have been investigated

using both MLST and DAG procedure. A and C values

were then computed for minimum spanning trees and

DAGs according to the definition given in the

preceding section. When the number of spanning

trees exceeded 106 (Appendix B) we considered only

the first 105 trees, assuming this set as a good sample

of the entire population.

To test the existence of the allometric property

C / Ah we plotted log(C) versus log(A). We obtained

the 40 linear regressions (20 systems, 2 algorithms)

that are presented in Fig. 2.

Considering how A and C have been defined it is not

clear whether the slope of these regression lines

accounts for efficiency (h) as it has been defined in the

flow-based approach (Banavar et al., 1999). However,

in Appendix D, we demonstrate that our h shows the

same mathematical behavior than the one originally

computed by Banavar et al. (1999). In fact, its value

ranges from 1 (star like structure) to 2 (maximally

connected DAG). In all cases, for the same system,

DAG produced higher slope than MLST. The two sets

of slopes do not overlap: MLST-slopes range from

1.136 to 1.140, whereas DAG-based range from 1.592

to 1.995. A one-tailed paired t-test showed that the
differences were significant (t = 15.827, d.f. = 19,

P < 0.001).

Once established that the two algorithms produced

different outcomes, we pooled all log(C) and log(A)

values and performed an ANOVA to test for a common

slope the dependent variable log(A) with the type

of algorithm and system size. Both interactions

(log(A):size and log(A):algorithm) yielded significant

differences (F1,707 = 21.511, P < 0.001 and F1,707 =

1242.557, P < 0.001, respectively); that is to say when

all the coefficients are considered a size effect can be

observed.

This size effect somehow contradicts the hypoth-

esis that a scaling relation exists in MLST and DAG.

However, when we used only the 10 larger networks (#

of nodes > 35) among those considered in this study

we found that this effect vanishes (F1,531 = 3.080,

P < 0.079; note that although the number of networks

is halved, the overall number of nodes, that is the

degrees of freedom in the F-test, remains quite high).

This can be explained by the fact that every time A = 2

then C is equal to 3. For A greater than 2, C may

assume different values depending on the structure of

MLST and DAG. Small size networks produce MLST

and DAG in which a high proportion of vertices share

the fixed combination A = 2 and C = 3, and this forces

the slope of the regression lines to higher values

(Garlaschelli et al., 2003). It must be added, however,

that this effect is due mainly to MLST, whereas in

DAG this problem is less pronounced.

Plotting the root values (A0C0) for all systems

(Fig. 3), however, we found that, while the effect of the

algorithm is still strong (F1,34 = 345.7195, P < 0.001),

that due to size vanishes (F1,34 = 0.0928, P = 0.7625).

If we consider that the value of the root node

summarizes the contribution of all other nodes in the

graph, we can state that allometry is maintained.

Also Fig. 3 highlights the generality of our results.

The significant regression line suggests that the

allometric relation found between size of food webs

(A, number of nodes) and overall connectedness (C,

realized or effective connections) holds across

different ecosystems.

4. Discussion

In this paper, we reconsider the allometric relation

C / Ah that was derived considering food webs as
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Fig. 2. Regression lines of log(C) versus log(A) for minimum length spanning trees (upper) and directed acyclic graphs (lower) obtained from

the 20 food webs listed in Table 1. For each line the slope (s) and the number of points (N) is given. Terminal nodes (A = 1, C = 1) have been

excluded because they can force the exponents toward artificially high values.
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Fig. 3. Regression lines obtained by plotting log(C0) versus log(A0)

values for MLST (R2 = 0.9834, F1,18 = 1127, P < 2.2E � 16) and

DAG (R2 = 0.9945, F1,34 = 3426, P < 2.2E � 16).
transportation networks, reducible to minimum span-

ning trees (Garlaschelli et al., 2003). The gross

simplifications that spanning trees operate on the

original food webs (Polis and Strong, 1996) cast

doubts about the validity of these structures as

adequate descriptors.

We used directed acyclic graphs as more adequate

proxies for food webs and extended to them the

topological approach used by Garlaschelli and

colleagues on MLST. Although an ecological meaning

for C has never been proposed, the way we used to

compute the C values (using linear algebra) suggest

that this parameter is a measure of the effective

connections that are established in the food web (Croot)

or in that part of the web whose node are all rooted in

node i (Ci). This effective connectivity scale with the

size of the food web and this allometric relation has

the usual form C / Ah. However, due to the different

definition we used for A and C one may wonder

whether the scaling exponent obtained in this study

holds the same meaning than the one obtained by

Banavar and colleagues using flow analysis.

The ranges of variation for our exponent coincide

with that of Banavar’s. The fact that the value Banavar

et al. (1999) obtained was mathematically controver-

sial does not affect the limits of variations for the

scaling exponent in connected food webs as the

transitive closure matrix cannot have less than N edges

(where N � 1 is the number of species in the food

web) and more than N2 edges.

We found that the ranges of values for h (see

Appendix D) in the two cases coincide: because of
this, reasonably, our scaling exponent can be used as a

proxy for efficiency in food webs. On the other hand it

is widely recognized that a close relation exists

between the anatomy of networks and their functions

(Strogatz, 2001); according to this, food web

efficiency in delivering the resources must be related

to topological extension of their branching structure,

measured through the level of effective connectivity in

any part of the web.

Taking our scaling relation as a proxy for efficiency

we expect food webs to be less efficient than expected,

as the slope of the regression lines is higher for DAGs

in comparison with MLST (the higher the slope the

lower the efficiency). Accordingly, energy delivery in

ecosystems would not be organized according to the

criterion of optimal efficiency. In fact whether

delivering at a minimum cost would represent the

optimal solution, a suite of interacting constraints such

as food preference (Chesson, 1983), size effect in

predator-prey interactions (Hastings and Conrad,

1979; Cousins, 1987), dynamical features (Pimm

and Lawton, 1977; Sterner et al., 1997), and efficiency

in energy transfer between trophic levels (Hairston

and Hairston, 1993) determine which flow patterns

really govern resource distribution in ecosystems.

These evidences challenge the idea of ecosystems as

more efficient than river and vascular networks in

delivering medium (Garlaschelli et al., 2003; Banavar

et al., 1999). In this respect, we averaged the slopes

calculated for DAGs and MLSTs for each of the 20

selected networks, and we obtained values in the range

1.41–1.61. On average, thus, we expect that if our

scaling exponent could measure efficiency the food

webs considered in this study would be classified as

medium-to-low efficiency systems.

Perhaps the allometric relation described here

suggests further thoughts. Consider the root node: it

holds that Croot = Aroot
h and because Aroot = V then

Croot = Vh. As shown in Appendix D, however, Croot is

the number of non zero coefficients of the adjacency

matrix coupled with the transitive closure of the food

web, that is the number of effective connections

between any pair of nodes. Recalling that E/V2 is a

general definition for connectance (Martinez, 1992)

we can state that Croot/V
2 is the connectance computed

on the transitive closure. Compared with the usual

connectance, which is based on the number of direct

links in the web, this of the transitive closure, we
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reiterate, consider connections established through

either direct links or indirect paths. We propose to call

the connectance of the transitive closure x. It is easy to

show that an allometric relation between x and the

number of nodes exists. In fact

x ¼ Croot

V2
¼ Ah

root

V2
¼ Vh

V2
¼ Vh�2

Parameter x would range between 0 (star-like struc-

ture, V ! 1) and 1 (chain-like graph or completely

connected DAG, V ! 1).

Results of this study are based upon a topological

investigation of unweighted networks. This approach

has limitations. The most significant one, in the

context of this paper, is that unweighted edges lead

to overemphasize rare interactions (Hairston and

Hairston, 1993). The implicit assumption that

the links are equal in value does not allow identifying

those pathways that play a major role in energy

distribution. By assigning the magnitude to interac-

tion links, topologies that actually govern resource

delivery would be identifiable. They, in turn,

could be explored in search of allometric relations.

This topic will be examined in further investiga-

tions.

When confronted with the structure of minimum

spanning trees one may wonder whether they are

mathematical/topological abstractions without any

real counterpart. In minimum length spanning trees

resource moves in a completely determined fashion, in

the sense that there are no redundant pathways to reach

a given node from the root and from any other node.

According to this one may recognize in this structure

something similar to the maximally constrained

configuration in which an ecosystem would be

expected to evolve in the absence of major external

driving forces (Ulanowicz, 1997).

In addition to this topological correspondence, a

functional analogy can be found between minimum

spanning trees and maximally constrained networks.

According to Ulanowicz (1990), the latter would

emerge from a process wherein those pathways that

foster more efficient transfers flourish at the expenses

of less effective routes, so that the network will tend

to become dominated by a few, intense flows.

Minimum length spanning trees, on the other hand,

maximize efficiency of transportation (Garlaschelli

et al., 2003). As such they seem to be ideal
candidates to give a shape to the maximally efficient

flow patterns that would emerge under the selective

pressure of internal processes during ecosystem

succession (Ulanowicz, 1990).

The tendency to select few, efficient connections,

however, would be balanced by the need to maintain

resilience, for which a certain degree of redundancy is

necessary (Mac Arthur, 1955; Mageau et al., 1995).

DAG, with their redundancy, would be intermediate

topologies between two extremes: those in which

redundancy is maximized, and the mostly con-

strained, highly efficient minimum spanning trees.

These two extremes correspond to the initial and final

states in Ulanowicz’ model of ecosystem growth and

development (Ulanowicz, 1990, 1997). We believe

that this scenario is intriguing and deserves further

attention.
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Appendix A. Minimum length spanning trees

Garlaschelli et al. (2003) proposed a method for

removing ‘‘weak’’ edges from food webs, obtaining a

subgraph that can embed one or more spanning trees.

Here, we summarize this procedure for a better

understanding of the technique.

We define a food web G as a digraph with V nodes

(trophospecies) and E edges (trophic relations). A

special node represents the ‘‘environment’’ (source of

all spanning trees).

The procedure can be sketched in four steps:
(a) a
ssign a trophic level to every node;
(b) r
emove the ‘‘weak’’ edges;
(c) s
eek for spanning trees;
(d) f
or each spanning tree compute the A and C

values.

http://www.r-project.org/


S. Allesina, A. Bodini / Ecological Complexity 2 (2005) 323–338332

Table A1

Stirling numbers of the second kind: ways to partition n objects (row

numbers) into j nonempty boxes (column numbers)

1 2 3 4 5 6 7

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1
A.1. Assigning the trophic level

In a food web, every node-species is connected,

directly or indirectly, with the environment, that

supplies the required energy. Thus, the food web is

said to be rooted in r (the root node). From a graph

theory point of view the underlying undirected graph

of the food web digraph is surely connected and a

simple path linking every species to the environment

(r node) can be identified. Garlaschelli et al. assign to

the first node (r) the level L0. Then recursively, L1 is

assigned to all predators of the first node; L2 to all

predators of L1-nodes and so forth. Because the

maximum distance between any node and the

environment is somehow bounded (Post, 2002), there

will be maximum four to six different levels no matter

how big the system is.

A.2. Removing ‘‘weak’’ edges

Thermodynamic constraints make longer trophic

pathways weaker than the shorter one. Accordingly,

every edge that goes from a node belonging to level Li

to a node belonging to level Lj with i � j is a ‘‘weak’’

link because the shorter way to go from the root to

node j does not include the link in question. These

‘‘loop forming’’ edges, take part in undirected cycles

(cycles of the underlying undirected graph).

A.3. Seeking for spanning trees

There are many ways for listing all the spanning

trees of a given digraph. We implemented the one

based on DFS-search and backtracking (Read and

Tarjan, 1975), because it is the simplest one. Note that

the number of spanning trees of the simplified digraph

(after removal of the ‘‘weak’’ edges) still could be very

high (Appendix E; e.g. we found more than 1025

spanning trees for the Cypress Wet ecosystem). In

these cases we computed ‘‘only’’ the first 10,000

spanning trees, assuming that this would be a good

sample of the entire population.

A.4. Computing A and C values

The last step consists in computing the A and C

values for each node in every spanning tree. The Ai

value associated with a node Vi is the number of nodes
reachable from Vi plus the node itself. That is Ai is the

number of predators (direct or indirect) of the ith

trophospecies plus 1. The Ci value assigned to node Vi

is the sum of all the Aj values of the predators of Vi plus

Ai. Probing whether a graph possesses an allometric

relation is possible by plotting log(C) versus log(A) for

all nodes.
Appendix B. Stirling numbers of the second

kind

The number of ways to partition n elements into j

nonempty boxes is given by the Stirling number of the

second kind S(n, j) (Stirling, 1730) The notation used

is the one proposed by Riordan (1980). The set [A,B,C]

can be partitioned into three boxes in one way S(3,

3) = 1({A}{B}{C}); into two boxes in three ways S(3,

2) = 3({A}{BC}, {AB}{C}, {AC}{B}); in one box in

one way S(3, 1) = 1({ABC}).

Stirling numbers of the second kind can be

recursively computed using the formula:

Sðn; kÞ ¼ Sðn � 1; k � 1Þ þ kSðn � 1; kÞ

This formula can be used to originate the so-called

Stirling triangle (Table A1):
Appendix C. Depth first search (DFS) and

feedback edges: building a rooted DAG

DFS (Tarjan, 1972) is one of the most important

graph-search algorithms. DFS visits all nodes that are

connected to an initial node (root of the DFS-tree); it

uses a recursive algorithm to go deeper into the graph.
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In particular, DFS is carried out on the first node by

carrying out DFS on its neighbours.

This algorithm can be quickly written assigning

different colours to the various nodes according to the

following specifications:
� w
hite: node to be visited;
� g
rey: discovered node;
� b
lack: visited node.

Nodes that during the search are encountered for

the first time become grey. Returning to a node once it

has been discovered makes it black. This occurs when

there are edges that point back to a grey node

(‘‘feedback edges’’). Those arcs form directed cycles

in the graph.

In pseudo-code, the procedure can be written as:
See Cormen et al. (1989) for a complete analysis of

DFS algorithm and examples.
Appendix D. Allometry in spanning trees and

directed acyclic graphs: deriving bounds and

properties

D.1. Definitions

A directed graph G(V, E) is a collection of V nodes

and E oriented edges connecting them. In a Spanning

Tree, the V nodes are connected by V � 1 edges; every

node has one incoming edge and may have more than
one outgoing edges. A directed acyclic graph (DAG) is

a directed graph where no closed pathways can be

formed following the direction of links. In every DAG

there is at least a source (node with no incoming

edges) and a sink (node with no outgoing edges). For

every DAG there exists at least a way of disposing

nodes so that, for every pair of nodes a and b, if a

comes before b in the ordering then there cannot be

any edge going from b to a (this way of ordering nodes

is called topological sorting).

Any digraph can be represented by a V 	 V

adjacency matrix. In it every coefficient specifies if

there is an edge going from the row-node to the

column-one. Once topological sorting has been

performed on a DAG the adjacency matrix takes the

form of a strictly upper triangular matrix (that is to say

a matrix where M[i, j] = 0 if i � j).
D.2. Allometry in spanning trees

We define two quantities A and C associated with

every node. From a graph-theory point of view Ai is

the number of nodes reachable from the ith node. Ci is

the sum of the Ajs of the nodes reachable from the ith

node. An allometric relation between A and C is

defined when log(Ci)/log(Ai) = h for all nodes.

The maximum value of h for a spanning tree is

obtained when the nodes are sequentially connected to

form a chain-like structure (Fig. 4). By disposing this

linear chain made of, say, V nodes from left (root as the

initial node) to right (terminal node, sink) and starting
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Fig. 4. Extreme configurations for MLST (top) and DAGs (middle); maximally connected DAGs (3–5 nodes) and their relation with geometry

(bottom).
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computing A values the other way around (from right

to left) one obtains 1, 2, 3, . . ., V. The C values are 1, 3,

6, 10, . . . (triangular numbers). This means that the C

value of the root will be Croot = V(V + 1)/2.

For an infinite chain the value for h would be:

h ¼ lim
V !1

logððVðV þ 1ÞÞ=2Þ
logðVÞ

that, after applying l0 Hospital’s rule twice, yields

h = 2.

The lower bound for h is obtained when the

spanning trees possess a star-like configuration

(Fig. 4). In this case, the A values will be 1 for all

the nodes but the root, whose value still equals the

number of nodes V. All the nodes will have C = 1

except for the root whose value will be C = 2V � 1.

The minimum value of h for an infinite star is

expressed by the limit

h ¼ lim
V !1

logð2V � 1Þ
logðVÞ

that, applying l0 Hospital’s rule yields to h = 1.

These properties of h have been obtained by

Banavar et al. (1999) using flows-based considera-

tions.

D.3. Allometry in DAGs

In a DAG every node can have more than one

incoming edges and the maximum number of edges is

V(V � 1)/2. The maximally connected DAG is the one

in which every node is directly connected to all the

nodes that follows it. Such ordering sequences can be

highlighted by a topological sorting, as the one

represented in Fig. 4. In this sequence the last node

reaches itself only, its immediate antecedent points to

it and itself, and so forth. Finally the root reaches all

the nodes.

As one can easily see, the values for A and C are the

same computed for the chain-like spanning tree.

Because A counts the number of reachable nodes its

value does not change no matter how many pathways

connect two nodes. As C is computed as a summation

of A values it comes out that also the C values are the

same. Thus, the scaling parameter h for a maximally

connected DAG composed by V nodes is the same

obtained for a V nodes chain. Because every spanning
tree is also a DAG, we can state that the minimum h for

a DAG is obtained for a star-like structure as well.

The upper and lower bounds for h, therefore, do

coincide and the values of h obtained for spanning

trees and DAGs are directly comparable.

D.4. Derivation of h using linear algebra:

The values for A and C can be computed using

linear algebra; in this way one also can have a

perception of the ecological meaning of these two

coefficients. In the case of a four-node linear chain, the

Adjacency matrix would be:

TST ¼

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

2
664

3
775

The transitive closure Cl(G) of a graph G is a graph

which contains an edge Eu,v whenever there is a

directed path from u to v (Skiena, 1990, p. 203). The

TCl matrix associated with the transitive closure of the

four-node chain can be obtained as TCl = [I � TST]�1,

where I is the identity matrix.

TST
Cl ¼

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

2
664

3
775

This matrix renders automatically A and C values

for every node: Ai will be the ith row sum; Ci will be

sum of all coefficients of the sub-matrix obtained

excluding the rows and columns belonging to nodes

that are non reachable from the ith node. The first row

sum is the Aroot value and the summation across the

whole matrix yields to the Croot value.

For a spanning tree, the matrix [I � TST]�1 includes

coefficients with values 1 or 0, because in a spanning

tree there can be just a pathway connecting any two

nodes. This does not hold for DAGs. Consider a

maximally connected four-node DAG like the one in

Fig. 4. Its adjacency matrix would be:

TDAG ¼

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

2
664

3
775
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the matrix P = [I � TDAG]�1 will take the following

form:

PDAG ¼

1 1 2 4

0 1 1 2

0 0 1 1

0 0 0 1

2
664

3
775

Any coefficient computes the number of pathways

linking row nodes with column node. To transform the

matrix P into the Adjacency matrix of the transitive

closure associated with the DAG we should build a

matrix where a coefficient takes value 1 if the corre-

sponding coefficient in P > 0, and 0 elsewhere,

that is:

TDAG
Cl ½i; j� ¼ 1 ifP½i; j�> 0

0 elsewhere

�

TDAG
Cl ¼

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

2
664

3
775 ¼ TST

Cl

This matrix is exactly the same than the one obtained

for a chain-like tree (see before). Thus, a chain-like

tree and a maximally connected DAG possess the

same transitive closure. Because this matrix has been

obtained for a maximally connected four-node DAG,

one soon recognizes that the maximum value for A,

which is V (number of nodes in the graph) can be

computed by counting the number of 1s in the first row

of the matrix, that pertaining the root node. Accord-

ingly the maximum value for C will be V(V + 1)/2.

The value h = 2 when V ! 1 thus holds in both the

cases of spanning tree and DAG.

D.5. Allometry and connectance

Considering the root node, the universal scaling

relation found for DAGs takes the form Croot = Ah
root.

Because Aroot = V then Croot = Vh. As shown before,

however, Croot is the number of edges of the adjacency

matrix coupled with the transitive closure of the food

web, that is it shows whether a connection exist

between any pair of nodes (that can be either direct or

indirect) of the graph. Recalling the general definition

for the connectance E/V2 we can state that Croot/V
2 is

the connectance of the transitive closure, which is the

connectance made of both direct and indirect
contributions. This highlights the ecological meaning

of C. We propose to call the connectance of the

transitive closure x. It is easy to show that an

allometric relation between the connectance of the

transitive closure and the number of nodes exists. In

fact:

x ¼ Croot

V2
¼ Ah

root

V2
¼ Vh

V2
¼ Vh�2

x would range between 0 (star-like structure, V ! 1)

and 1 (chain-like graph or completely connected

DAG, V ! 1).
Appendix E. The matrix tree theorem

Given a digraph G(V, E), with no self-loops, one

can easily compute the number of spanning trees of the

graph with the node Vi as a source (Harary, 1994). We

define A[ai,j] the adjacency matrix of the graph G. We

construct a new matrix Mid½mid
i; j� where:
� m
id
i; j ¼ �ai; j if i 6¼ j
� m
id
i;i ¼ InDegðViÞ
InDeg(Vi) is the in-degree (number of edges incident

to) of Vi.

The number of spanning trees starting from Vi is the

value of any ith column entry of the cofactor matrix

computed from Mid.

Given a 4 	 4 adjacency matrix

A�

0 1 1 1

1 0 0 1

0 1 0 0

0 0 0 0

2
664

3
775

the matrix Mid will become:

Mid �

1 �1 �1 �1

�1 2 0 �1

0 �1 1 0

0 0 0 2

2
664

3
775

and the cofactor matrix where Ci,j = (�1)i+jMinori,j

where Minori,j is the determinant of the matrix
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obtained by eliminating the ith row and the jth column:

C �

4 0 0 0

4 0 0 0

4 0 0 0

4 0 0 0

2
664

3
775

In this case, the graph has four spanning trees

starting from the first node. This theorem was proved

by Tutte (1948).
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